首页 > 文章中心 > 电磁学论文

电磁学论文

电磁学论文

电磁学论文范文第1篇

现有制造电池、蓄电池的原理是电化学反应。电极是不同种元素、不同种化合物构成,产生电流不需要磁场的参与。

目前有磁性材料作电极的铁镍蓄电池(注1),但铁镍蓄电池放电时没有外加磁场的参与。

通过数次实验证明,在磁场中是可以发生电化学反应的。本实验报告是研究电化学反应发生在磁场中,电极是用同种元素、同种化合物。

《磁场中的电化学反应》不同于燃料电池、磁流体发电。

二、实验方法和观察结果

1、所用器材及材料

(1):长方形塑料容器一个。约长100毫米、宽40毫米、高50毫米。

(2):磁体一块,上面有一根棉线,棉线是作为挂在墙上的钉子上用。还有铁氧体磁体Φ30*23毫米二块、稀土磁体Φ12*5毫米二块、稀土磁体Φ18*5毫米一块。

(3):塑料瓶一个,内装硫酸亚铁,分析纯。

(4):铁片两片。(对铁片要进行除锈处理,用砂纸除锈、或用刀片除锈、或用酸清洗。)用的罐头铁皮,长110毫米、宽20毫米。表面用砂纸处理。

2、电流表,0至200微安。

用微安表,由于要让指针能向左右移动,用表头上的调0螺丝将指针向右的方向调节一定位置。即通电前指针在50微安的位置作为0,或者不调节。

3、"磁场中的电化学反应"装置是直流电源,本实验由于要使用电流表,一般的电流表指针的偏转方向是按照电流流动方向来设计的,(也有随电流流动方向改变,电流表指针可以左右偏转的电流表。本实验报告示意图就是画的随电流流动方向改变,电流表指针可以向左或向右偏转的电流表)。因此本演示所讲的是电流流动方向,电流由"磁场中的电化学反应"装置的正极流向"磁场中的电化学反应"装置的负极,通过电流表指针的偏转方向,可以判断出"磁场中的电化学反应"装置的正极、负极。

4、手拿磁体,靠近塑料瓶,明显感到有吸引力,这是由于塑料瓶中装了硫酸亚铁,说明硫酸亚铁是铁磁性物质。

5、将塑料瓶中的硫酸亚铁倒一些在纸上,压碎硫酸亚铁晶体,用磁体靠近硫酸亚铁,这时有一部分硫酸亚铁被吸引在磁体上,进一步说明硫酸亚铁是铁磁性物质。

6、将磁体用棉线挂在墙上一个钉子上让磁体悬空垂直不动,用装有硫酸亚铁的塑料瓶靠近磁体,当还未接触到悬空磁体时,可以看到悬空磁体已开始运动,此事更进一步说明硫酸亚铁是铁磁性物质。(注:用另一个塑料瓶装入硫酸亚铁饱和溶液产生的现象同样)

7、通过步骤4、5、6我们得到这样的共识,硫酸亚铁是铁磁性物质。

8、将塑料瓶中的硫酸亚铁适量倒在烧杯中,加入蒸溜水溶解硫酸亚铁。可以用饱和的硫酸亚铁溶液,然后倒入一个长方形的塑料容器中。实验是用的饱和硫酸亚铁溶液。装入长方形容器中的液面高度为40毫米。

9、将铁片分别放在塑料容器中的硫酸亚铁溶液两端中,但要留大部分在溶液之上,以便用电流表测量电流。由于两个电极是用的同种金属铁,没有电流的产生。

10、然后,在塑料容器的外面,将铁氧体磁体放在某一片铁片的附近,让此铁片处在磁埸中。用电流表测量两片铁片之间的电流,可以看到有电流的产生。(如果用单方向移动的电流表,注意电流表的正极应接在放磁体的那一端),测量出电流强度为70微安。为什么同种金属作电极在酸、碱、盐溶液中有电流的产生?电位差是怎样形成的?我是这样看这个问题的:由于某一片铁片处在磁埸中,此铁片也就成为磁体,因此,在此铁片的表面吸引了大量的带正电荷的铁离子,而在另一片铁片的表面的带正电荷的铁离子的数量少于处在磁埸中的铁片的带正电荷的铁离子数量,这两片铁片之间有电位差的存在,当用导线接通时,电流由铁离子多的这一端流向铁离子少的那一端,(电子由铁离子少的那一端铁片即电源的负极流向铁离子多的那一端铁片即电源的正极)这样就有电流产生。可以用化学上氧化-还原反应定律来看这个问题。处在磁埸这一端的铁片的表面由于有大量带正电荷的铁离子聚集在表面,而没有处在磁埸的那一端的铁片的表面的带正电荷的铁离子数量没有处在磁埸中的一端多,当接通电路后,处在磁埸这一端的铁片表面上的铁离子得到电子(还原)变为铁原子沉淀在铁片表面,而没有处在磁埸那一端的铁片失去电子(氧化)变为铁离子进入硫酸亚铁溶液中。因为在外接的电流表显示,有电流的流动,可以证明有电子的转移,而电子流动方向是由电源的负极流向电源的正极,负极铁片上铁原子失去电子后,就变成了铁离子,进入了硫酸亚铁溶液中。

11、确定"磁场中的电化学反应"的正、负极,确认正极是处在磁体的位置这一端。这是通过电流表指针移动方向来确定的。

12、改变电流表指针移动方向的实验,移动铁氧体磁体实验,将第10步骤中的磁体从某一片上移开(某一片铁片可以退磁处理,如放在交变磁埸中退磁,产生的电流要大一些)然后放到另一片铁片附近,同样有电流的产生,注意这时正极的位置发生了变化,电流表的指针移动方向产生了变化。

如果用稀土磁体,由于产生的电流强度较大,电流表就没有必要调整0为50毫安处。而用改变接线的方式来让电流表移动。

改变磁置:如果用磁体直接吸引铁片电极没有浸在液体中的部份的方式来改变磁置,铁片电极不退磁处理也行。

下图所示磁置改变,电流表指针偏转方向改变。证明电流流动方向改变,《磁场中电化学反应》成立。电流流动方向说明了磁体在电极的正极位置。

三、实验结果讨论

此演示实验产生的电流是微不足道的,我认为此演示的重点不在于产生电流的强度的大小,而重点是演示出产生电流流动的方向随磁体的位置变动而发生方向性的改变,这就是说此电源的正极是随磁体在电源的那一极而正极就在磁体的那一极。因此,可以证明,"磁场中的电化学反应"是成立的,此电化学反应是随磁置发生变化而产生的可逆的电化学反应。请特别注意"可逆"二字,这是本物理现象的重点所在。

通过磁场中的电化学反应证实:物理学上原电池的定律在恒定磁场中是不适用的(原电池两极是用不同种金属,而本实验两极是用相同的金属)。

通过磁场中的电化学反应证实:物理学上的洛仑兹力(洛伦兹力)定律应修正,洛仑兹力对磁性运动电荷是吸引力,而不是偏转力。并且洛仑兹力要做功。

通过实验证实,产生电流与磁场有关,电流流流动的方向与磁体的位置有关。电极的两极是用的同种金属,当负极消耗后又补充到正极,由于两极是同种金属,所以总体来说,电极没有发生消耗。这是与以往的电池的区别所在。而且,正极与负极可以随磁置的改变而改变,这也是与以往的电池区别所在。

《磁场中电化学反应》电源的正极与负极可以循环使用。

产生的电能大小所用的计算公式应是法拉弟电解定律,法拉第电解第一定律指出,在电解过程中,电极上析出产物的质量,和电解中通入电流的量成正比,法拉第电解第二定律指出:各电极上析出产物的量,与各该物质的当量成正比。法拉第常数是1克当量的任何物质产生(或所需)的电量为96493库仑。而移动磁体或移动电极所消耗的功应等于移动磁体或移动电极所用的力乘以移动磁体或移动电极的距离。

四、进一步实验的方向

1、在多大的铁片面积下,产生多大的电流?具体数字还要进一步实验,从目前实验来看,铁片面积及磁场强度大的条件下,产生的电流强度大。如铁片浸入硫酸亚铁溶液20毫米时要比浸入10毫米时的电流强度大。

2、产生电流与磁场有关,还要作进一步的定量实验及进一步的理论分析。如用稀土磁体比铁氧体磁体的电流强度大,在实验中,最大电流强度为200微安。可以超过200微安,由于电流表有限,没有让实验电流超过200微安。

3、产生的电流值随时间变化的曲线图A-T(电流-时间),还要通过进一步实验画出。

4、电解液的浓度及用什么样电解液较好?还需进一步实验。

五、新学科

由于《磁场中的电化学反应》在书本及因特网上查不到现成的资料,可以说是一门新学科,因此,还需要进一步的实验验证。此文起抛砖引玉之用。我希望与有识之士共同进行进一步的实验。

我的观点是,一项新实验,需要不同的时间、不同的人、不同的地点重复实验成功才行。

参考文献

电磁学论文范文第2篇

变化的电场能够在周围的空间产生磁场是麦克斯韦电磁场理论的第二个要点,也是麦克斯韦对电磁场理论的最主要的贡献.这样,不但传导电流(由电荷运动引起)能够在周围空间产生磁场,而且变化的电场(或“位移电流”)也能够在周围空间产生磁场.也就是说,产生磁场的途径有两种:电流(传导电流)或者变化的电场(或叫做“位移电流”).甲种本的这个例子所讲的“运动电荷要产生磁潮,可以从两个层次来理解.

一、把“运动电荷要产生磁潮理解为电荷运动形成电流(传导电流),这个电流要产生磁场,这是中学生所能理解的层次.按照这种理解,这个电场是由传导电流产生的,而不是由“位移电流”产生的,即不是由变化的电场产生的.甲种本的论断是错误的.

二、从较高的层次来理解“运动电荷要产生磁潮这句话.电荷的运动是任意的,由于既有速度v,又有加速度a,这个电荷产生的电场和磁场是非常复杂的,要用电动力学的方法才能处理,一般中学生不可能理解到这一层次,而且这时在运动电荷产生的磁场中,既有由变化的电场产生的,也有由传导电流产生的,到底哪一部分主要,要视电荷的运动情况及观测点的位置而定.在电荷附近(近场区)磁场主要由传导电流产生,所以不能简单地认为“这个磁场是由变化的电场产生的”.

电磁学论文范文第3篇

关键词:电磁场与电磁波;电磁特性;均匀平面波

作者简介:张清河(1969-),男,湖北当阳人,三峡大学理学院,副教授。

基金项目:本文系国家自然科学基金(项目编号:61179025)、三峡大学教学研究项目共同资助的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)14-0071-02

鉴于“电磁场与电磁波”在电子与通信技术领域的重要性,各国高校的电子与信息技术类专业一直将其作为一门必修的基础课程。[1-3]对于电子与信息技术类大学本科专业学生而言,“电磁场与电磁波”无疑是理论性最强、逻辑性最严密、数学工具应用最多、概念最抽象、涉及应用领域最广的课程之一。学好这门课,对培养学生严谨的科学思想、科学分析问题的能力、复杂抽象的逻辑思维能力、勇于开拓的创新精神等将起着十分重要的作用。笔者在三峡大学(以下简称“我校”)电子信息科学与技术、光信息科学与技术两个本科专业讲授“电磁场与电磁波”课程多年,根据该课程的特点和知识体系,结合学生实际,采用多样化教学方法、新颖独特的教学内容,强化理论与实际应用相结合,激发了学生的学习兴趣,有效地改善了教学效果。

一、教材内容灵活处理

我校选用文献[4]作为电磁场与电磁波课程教材,它同时也是国内多所高校选用的教材。在多年讲授的基础上,对教材中的一些内容进行了灵活处理,取得了良好的效果。

在“媒质的电磁特性”一节中,教材直接给出了介质表面极化电荷面密度、磁化电流面密度的表达式,没有具体的推导过程,学生理解不了。事实上,这一结论的前提应该是自由空间中单一均匀介质表面,而教材中没有明确这一前提。在讲授这一部分内容时,先推导出任意两种不同均匀介质形成的交界面上极化电荷、磁化电流面密度,然后再退化到自由空间中单一均匀介质表面,下面仅以极化电荷为例。如图1,由于两者介质的极化强度不同,极化迁出与迁入的电荷不相等,导致在交界面的薄层内存在极化面电荷分布。

二、注重课程在新技术领域中的应用

在教学过程中,在阐述基本理论和基本概念的同时,积极引导学生去寻找电磁场与电磁波的应用,特别是在若干新技术领域中的应用,让学生了解电磁场与电磁波在科学技术进步中的作用,极大地激发了学生的学习兴趣,收到了良好的教学效果。

在讲授“均匀平面波在各向异性媒质中的传播”一节时,重点放在均匀平面波在磁化等离子体中的传播。首先介绍了电离层依据电子浓度的不同,具有层状结构的分布特点,如D层、E层、F层等,在地磁场的作用下,电离层具有两个特性角频率,即电子的回旋角频率和等离子体临界频率。并指出电磁波在电离层中的传播特性与这两个频率紧密相关。当电磁波频率接近电子的回旋角频率时,将发生磁共振现象,导致电磁波能量损耗极大,电离层对电磁波的吸收最大,这是短波通信应该尽量回避使用的频率。为了实现卫星通信,电磁波频率必须高于等离子体临界频率,否则信号将不能穿过电离层。另一方面,频率小于临界频率的电磁波不能穿透电离层而被反射,利用电离层对电磁波的反射原理,可以实现短波远距离的通信和远距离目标的探测,这正是天波雷达的基本原理。在讲述“天线阵”一节时,结合现代军事尖端武器装备,讲解了相控阵雷达及相控阵天线的概念,并简要介绍了其工作原理,即通过控制相邻天线之间的相位差,就能够改变天线阵波束最大值的指向,实现主波束在全空间的扫描。讲解电磁波在导电介质中的传播时,结合海水的导电特性,向学生解释了为什么对潜通信要用长波通信。在讲解电磁波的极化概念时,引导学生分析为什么收音机和电视的天线架设不同,并简要介绍了电磁波的极化在微波遥感、光学工程、分析化学等应用领域中的广泛应用。通过理论知识与实际应用相结合,学生对这些问题有了较深的认识,开阔了视野,对本课程的学习兴趣也越来越浓厚。

三、结语

“电磁场与电磁波”课程难学难教,而掌握本课程的理论基础知识,对电子信息类专业的学生来说又非常重要。我们在教学过程中进行了一些有益的探索,通过对教材内容的灵活处理、大量穿插理论知识在高新技术领域中的应用实例等,激发了学生对该课程的学习兴趣,取得了良好的教学效果。

参考文献:

[1]Jin Au Kong.电磁波理论[M].吴季,等,译.北京:电子工业出版社,2003.

[2]柯亨玉.电磁场理论[M].北京:人民邮电出版社,2004.

电磁学论文范文第4篇

关键词:单极感应 麦克斯韦场方程 狭义相对论 电磁感应定律

一、单极感应现象的发现及其简介

单极感应现象是轴对称磁体绕其对称轴转动时产生的一种特殊的电磁感应现象,十九世纪和二十世纪的科学家尝试用磁力线来形象的解释这一现象,主要有两种观点:m理论认为磁场随磁体一起旋转,n理论认为磁场不随磁体一起旋转。本文主要回溯历史上有关单极感应现象的研究,以及通过狭义相对论和现代电磁理论试解释单极感应现象。

单极感应现象是指轴对称磁体绕其对称轴转动时外部回路产生电流的现象。当磁体转动时回路中有电流通过。法拉第(faraday)最先发现该现象。当装置触头分别位于旋转磁体的一端轴处和中间位置时,回路中的电流最大如果磁体相对于观察者静止,回路中的abc部分以同样大小的角速度ω向相反方向转动,回路中将会出现同样的电流;以稳定电流的电磁铁代替永久磁体,并以导体片覆盖电磁铁的表面,当电磁铁以ω 绕其对称轴旋转时,回路中也能出现电流。对于如何解释这种现象,法拉利认为磁感线不随磁铁转动,是磁铁在磁场中感应出电流,但这与安培分子电流假说矛盾,安培理论认为物质的磁性起源于分子环流,因此,如果存在磁力线,它们就应该随着分子环流的运动而运动。这样,当磁铁转动时,磁力线就会随着磁铁一起转动。因此,韦伯认为磁力线随磁体转动,但究竟应该怎么解释呢。轴对称磁体绕其对称轴转动时,在惯性参考系中,空间各点的磁场大小是不随时间发生变化的,磁场仍然是静场,那么为何能在静止的回路中产生电流呢,为了解决这个问题有了以后的单极感应开路实验。

二、pegram 的实验

pegram 深信m 理论假说已经被推翻了,于是1917 年进行了再一次的实验pegram 的实验装置。螺线管a 的内径为29cm、长60cm,按每厘米 55 匝绕制而成;与螺线管同轴的圆柱形电容器b 由铜皮制成,外筒直径为25cm,长为60cm,两端封闭,上端留一个孔,以使连接静电计的屏蔽线穿过。内筒c 的直径为10cm,长33cm,由硬橡胶棒支住;铜条de 沿径向架设于内外筒之间,这样可以通过推下导体棒ef 从而使内圆筒能够与外圆筒任意连接,或是通过推下检流计的连接dg 从而内圆筒可以与静电计连接。静电计由一个小的四分仪和一个很轻的镀银的云母针制成的,灵敏度为0.87×10-4 伏/分格。pegram 使同轴电容器(与螺线管固在一起)与铜条同时以每分钟900 转的速度绕其对称轴旋转。接着给螺线管接入励磁电流,并推动棒ef,铜条de 两端与内外电容器筒相接;然后拉动棒ef,使内筒由屏蔽线与静电计相接,关闭励磁电流,测量内筒上是否带有电荷。结果实验中静电计发生了偏转,于是 pegram 从静电计的偏转确认电容器被充电了。由于实验过程中,外电路和磁体一起转动,而在回路中却有电流通过。因此,如果用m 理论假说是无法解释的,因而pegram 认为他的实验证实了barnett 和kennard的实验结果,即证明了n 理论成立;而且表明在单极感应中“感生电动势的位置”是在运动的导体中,且它完全不依赖于磁场的转动。

三、用相对论解释单机感应现象

单极感应的争论在历史上是围绕“磁力线是否随磁铁转动”这一问题展开的. 然而, 今天的多数物理学家已认识到‘磁力线运动’的提法没有意义, 并认为经典电动力学的所有问题都可由麦克斯韦理论解决而无须借助力线概念. 我们认为, 虽然力线概念在处理某些问题时有其好处, 但决非必不可少; 对于某些问题(如单极感应), 力线的引用特别是“运动力线” 的提法更是有害无益。

由相对论结论与传统观点比较来看,相对论抛弃了原有的争论,而是从拎一个角度看待问题,与实验室静止的观察者会观察到电极化强度不为0,而随动观察者会观察到电极化强度为0,这是由于相对论的修正,如果纠结于m与n理论之间,则沦于表象。

参考文献:

[1] 梁灿彬,池无量,梁竹健:对单极感应理论的一点澄清,北京师范大学;

[2]周建忠,刘炜:论

单极感应”电磁现象所蕴含的物理规律,西北大学学报,2009年5月,第7卷第3期;

电磁学论文范文第5篇

关键词:教学方法;电磁场与电磁波;类比;创新

作者简介:黄麟舒(1975-),女,湖南常德人,海军工程大学电子工程学院,讲师;柳超(1963-),男,湖南岳阳人,海军工程大学电子工程学院,教授。(湖北 武汉 430033)

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)23-0068-02

一、“电磁场与电磁波”课程和类比教学简介

“电磁场与电磁波”课程历来是一门疑难课程。尤其是在教学改革后,这主要有三个方面的原因:课程理论性强,公式繁杂,理论抽象;实验设备不配套,实验设备投入大,院校缺乏开设电磁场与电磁波实验的条件,理论与实践脱节;随着近几年的教学改革,此类课程的课时被大幅压缩,有的学时分配减少约三分之一,教学自由度受到很大限制。该课程被学生视为天书,被列为大学阶段难学的课程前列。为激发学员的学习兴趣,改善“老师讲得津津有味,学生听得昏昏欲睡”的局面,急需对这门课程的教学方法进行改进。经过几年的不懈努力,不断总结完善,将多种教学手段综合运用,积累了一些有利于该课程的教学方法。

类比教学是一种比较教学,对象是几种不同的教学内容,它们必须有先后,是用已学的课程知识来导入新课知识,使学生学习起来有参照,易于接受。在“电磁场与电磁波”课程中引入类比的教学策略,不但可以提高教学效率,从教学效果看,学员也相对容易接受新知识。但教师在教学中处理教学内容时,需要注意简繁有度、重点突出,调动学生的联想记忆、想象力等能力,通过类比方法掌握新知识点。

二、类比教学方法的实施

“电磁场与电磁波”课程的类比教学方法有几种实施策略。有的是课程、领域之间的横向类比,例如与“大学物理”相关知识点的类比,“电磁场”和“流体力场”、“电磁波”和“机械横波”的比较。有的则是纵向类比,譬如该课程本身的静电场和静磁场、静电场和恒定电流场等的对比。在如下几个方面对“电磁场与电磁波”课程教学进行类比探讨,目的是探索适合该课程的行之有效的教学方法,以提升学生的学习兴趣和效率,培养学生的创新能力。

1.课程之间的类比。

即“电磁场与电磁波”和“大学物理”的类比。

首先需明确“电磁场与电磁波”并非“大学物理”的简单重复。高等院校的“大学物理”课程一般安排在大学一年级下学期,而“电磁场与电磁波”课程一般安排在大学三年级上学期或下学期,它们之间有先后且有衔接。因此,“电磁场与电磁波”不仅包含“大学物理”中的静电场、恒定磁场、电磁感应、时变电磁场的麦克斯韦方程等内容,还包括磁介质及磁化、边值问题及其解法、正弦电磁场、场的复数和瞬时值表示、标量位函数和矢量位函数、波动方程及其解、平面波的传播规律、电磁辐射等内容,是后续课程“微波技术”、“天线与电波传播”的基础课。而且,在大学物理中学过的浅显的电磁学往往是一些特例,而“电磁场与电磁波”深入介绍了电磁场与电磁波的一般性的基本特性及规律,学生需要学习的是更多一般性的规律,而且内容侧重时变电磁场和波的规律研究。因此,“电磁场与电磁波”既与大学物理有衔接又有区别,教学中如果借助类比的教学方法,从“大学物理”过渡到“电磁场与电磁波”的知识点,既可以节省授课时间,又能为学员所接受。

举一个证明方法的例子。“大学物理”中麦克斯韦方程组是以积分形式给出的,而“电磁场与电磁波”中以积分和微分形式给出,学生在理解时微分形式比积分要难,所以比较好的方式是采用类比方法讲述微分形式。譬如,在讲解麦克斯韦方程第一方程时,即传导电流和变化的电场均产生磁场的推广的安培环路定理时,先写出已学“大学物理”中的积分形式:

让学生推导微分形式,要提醒学生推导中要用到前面所学数学知识旋度定理,实际教学中大部分学生都能从如下所示步骤推出微分形式:

s是以L为边界的任意曲面,故有:。

由于能够推导出微分形式,学生由被动抄写变为主动推导,加入了主观思考,调动了积极性,使得其踊跃去推导另外三个方程,比如利用散度定理由磁通连续性原理的积分形式推导出微分形式,自己总结得到磁场是无散场的推论。学生在探究过程中水到渠成地掌握了麦克斯韦方程的两个重要定理的微分和积分形式。故激发了学生探究的兴趣,也活跃了课堂气氛。可见,类比教学可激发学生学习兴趣,提高课堂授课质量。

2.课程自身知识点的纵向类比

在时变电磁场中,电和磁是紧密联系的两种现象。虽然某些电现象和磁现象在本质上相异,但宏观现象上有很好的相似性,启发我们在教学方法上注意到这种研究方法的相似性。在各章节讲授完成进行章节小结时,譬如在小结恒定磁场时,先与学生一道回顾静电场是由电荷量不随时间变化的静止电荷产生的电场。而恒定磁场是恒定电流在周围空间产生的对于运动电荷有力的作用的一种场。在讲授内容上,这两种场有很相似的现象,对应着很相似的知识点。例如:电介质的极化现象与磁介质的磁化现象,电场的场量、位函数等等,详细对比见表1。在掌握了电现象的基础上,利用电磁对偶关系,理解磁现象的相关知识就容易些,而且更加深了对其本质的理解。

在前面讲授静电场时,首先给出电场强度的定义,讨论真空中的静电场,然后讨论介质中的静电场,在不同介质的交界面上,静电场会发生变化,讨论场量的边界条件,最后介绍电容,讨论静电场的能量与力的计算方法。在讲授恒定磁场时,如同讨论静电场一样,先讨论真空中的恒定磁场,然后再讨论磁介质在恒定磁场作用下发生的磁化现象,然后再分析介质中的恒定磁场,接下来讨论恒定磁场方程及其边界条件,电感、磁场能量和磁场力的计算。为了清晰地表现这种宏观的对称性,文献[3]给出了几种电场和磁场的典型的对偶关系应用,见表2。利用该表进行课程小结,既缩短了知识传授与接受的过程,又有助于对知识融会贯通,便于记忆。

更进一步,引入磁荷和磁流后,对于时谐场,可以推导出只有电流源和只有磁流源的麦克斯韦方程,可以看到两个方程组的数学形式完全相同。对偶形式可见下表3。

则可由另一个方程组得到另一个方程组。如果按照上述各量的互换关系,可由一类问题的边界条件得到另一类问题的边界条件(如只存在磁流源的边界条件),那么由一类问题的解经上述各量互换后即可得到另一类问题的解,这就是所谓的二重性或对称性。概括地说,如果描述两种不同物理现象的方程具有相同的数学形式,则它们的解也将具有相同的数学形式,这样的事实称为二重性或对偶性。利用二重性原理,可由电流源激发的电磁场的一般解法及其结果,直接导出磁流源激发的电磁场的一般解法。

另外,恒定电场与静电场在一定条件下机理类似,故也可以用类比方法进行教学。首先交代恒定电流场的产生是:将一块导体与电源的两个极板相连,由于两个极板之间始终存在一定的电位差,在导体中形成电场,迫使自由电子维持连续不断的定向运动,从而形成电流,或者说,若电源的电压与时间无关,导体中的电流强度是恒定的,导体中的电场也是恒定的。

无外源区中均匀导电介质内部的恒定电流场方程和无源区中的均匀介质内部的静电场方程分别归纳如表4所示。从表中容易看出,在不包括电源局外场的导电媒质中恒流电场的基本方程与无电荷分布区域内静电场的基本方程有相似的形式。

由表可见,两种场非常相似。恒定电场和静电场一样,也与时间无关。由于两个场的电位函数均满足拉普拉斯方程,所以如果两个场用电位表示的边界条件相同时,则两个场的解必然相同。因此对于某一恒流电场的边值问题,如果对应的静电场边值问题是已经有解的,则恒流电场的解便可以直接写出,只需将ε换成σ、q换成I、换成等相对应的物理量就可以了,而不需要重新计算。这种方法称为静电比拟法。为了培养学生的创新思维可进一步引导学生思考:在什么条件下二者可比拟?如何形成这种条件。由此引出实验室研究静电场时常用的一种方法,即静电比拟法,用恒流电场模拟静电场,而实验室在恒流电场中进行测量比在静电场中容易得多。所以利用类比的方法能启发学生步步深入。

还有电磁波与机械波都是横波,都具有横波的特性等方面的类比,水波的传播与电磁波能的传播的类比,电磁场与流体力场的类比等等,也可以采用类比的教学策略进行更加形象、直观的传授,启发创造性思维。

三、结束语

提高教学质量和实效始终是高等院校的工作重点。如何为学生创造一个宽松、活泼的课堂学习氛围?如何引导学生自发学习,超越自我?如何为学生打下宽厚的知识基础,以便能够为其将来的某一领域的研究打下基础?这些都需要教育工作者在实践中进行深入研究。实践教学结果表明,类比教学方法运用于“电磁场与电磁波”课程中,有利于提升学生的学习积极性和能动性,教学效果得到提升。

参考文献:

[1]杨儒贵.电磁场与电磁波[M].北京:高等教育出版社,2010.:122-143.

[2]梁昌洪.关于电磁理论的若干思考[J].电气电子教学学报,2004,26(1):1-8.

[3]葛文萍,贾振红,山拜·达拉拜.探索解决电磁场理论难教难学的方法[J].理工高教研究,2007,26(5).

[4]周雪芳,钱胜,李齐良.电磁场与电磁波精品课程建设的探索与实践[J].中国电力教育,2011,(4).