首页 > 文章中心 > 模式识别技术

模式识别技术

模式识别技术

模式识别技术范文第1篇

【关键词】语音识别;简单模板匹配;预处理;特征提取

1 语音识别技术原理

语音识别是为了让机器“懂”我们的语言,准确无误地识别出我们发出语音内容,并且做出符合语音内容的一系列动作,执行我们的意图。分析人类语言交流通信的过程,可以启发我们的研究思路。对人类语音通信流程[1-2]分析如图1。

由人类语音通信流程框图可以看出,人类发出语音过程如图左半部分,语音理解过程如图右半部分。语音识别包括两种含义,一是:将人类说的话转换成文字,二是:在充分理解口述语音的基础上,不仅仅是将语音转换为文字信息,而且对语音内容也要作出正确响应[3]。在此,本文认为语音识别和语音理解意义等同,所以可用图1右侧部分流程可将语音识别过程。

目前语音识别技术应用中大部分都是小词汇量,词语间相互独立基于简单模板匹配工作原理的识别模式。针对这种典型的语音识别模式,原理流程路线图[4]如图2所示:

1.1 基于发音模型的语音信号产生模型

语音信号的产生是语音识别技术的基石,在语音信号处理的大部分过程中对语音信号产生模型有很强的依赖性。本文研究过程中,首先对人类发音过程进行了解:人类发音流程是首先肺部收缩,迫使气流通过声门和声道引起音频震荡产生[3]。根据人的声道三种不同激励方式,分别对应产生了三种被大家熟知的发音类型,分别是浊音,摩擦音或清音,爆破音。

语音信号可看做由线性系统受到激励信号的激励输出产生。如图3是基于发音模型的语音信号产生模型流程图:

如图3建立的语音信号产生模型中认为浊音是周期为N0的冲激信号,且N0=fs/F0(其中F0是基音频率,fs是采样频率)。清音认为是一个均值为0,幅值是正态分布的波形信号。参数Av,Au分别用来调节浊音和清音的幅值。

从已有语音识别技术研究结果可知,窗函数类型众多,使用不同形式的窗函数对短时分析处理语音信号结果有很大的影响。已知目前应用最广泛的窗函数是汉明窗,结合仿真实验分析可以看出:高斯窗函数的横向主瓣宽度最小,但其纵向旁瓣高度最高;汉明窗函数的横向主瓣宽度最宽,纵向旁瓣高度是三种窗函数中最低的。

2.3 端点检测

语音信号的起始点是语音信号处理的关键分界点,端点检测的目的就是找到连续语音信号中的信号起始点。常用的端点检测方法有两种,分别是短时平均能量和短时过零率[6]。当下流行的端点检测方法是短时平均能量和短时过零率两者的结合,称这种方法为双门限端点检测算法[7]。

在实际问题中通常采用两者结合解决问题。本文同样是采用两者结合的方法,利用短时过零率方法检测语音信号波形穿越零电平的次数,既代表的是清音;用短时平均能量方法计算第y帧语音信号的短时平均能量E(y),既代表的是浊音,进而实现可靠的端点检测。

3 特征提取

目前特征是语音信号预处理中的重要步骤。在实际特征提取中,较常采用的参数是线性预测倒谱系数(LPCC)和Mel倒谱系数(MFCC)。二者采用的均是时域转换到倒谱域上,但是出发思路两者不同。线性预测倒谱系数(LPCC)以人类发声模型为基础,采用线性预测编码(LPC)技术求倒谱系数;Mel倒谱系数(MFCC)以人类听觉模型为基础,通过离散傅利叶变换(DFT)进行变换分析。

其中k表示第k个滤波器,Hm(k)表示第k个mel滤波器组,f(m)为中心频率,m=1,2,…K,K表示滤波器个数。

经过仿真实验分析比较,可以分析得出Mel倒谱系数(MFCC)参数较线性预测倒谱系数(LPCC)参数的优点,优点如下:

(1)语音低频信号是语音信息的聚集区,高频信号相对低频语音信号更容易受到周围环境等的干扰。Mel倒谱系数(MFCC)将线性频标转化为Mel频标,强调语音的低频信息,从而突出了有利于识别的信息,屏蔽了噪声的干扰[8]。LPCC参数是基于线性频标的,所以没有这一特点;

(2)MFCC参数无任何假设前提,在各种语音信号预处理情况下均可使用,但是LPCC参数首先假定所处理的语音信号是AR信号,对于动态特性较强的辅音,这个假设并不严格成立[8];

(3)MFCC参数提取过程中需要经过FFT变换,我们可以顺便获得语音信号频域上的全部信息,不需要多花费时间处理,有利于端点检测、语音分段等算法实现[8]。

4 训练与识别

训练和识别是语音识别的中心内容,有很多专家学者研究了一系列成果。语音识别实质是模式匹配的过程,而对分类器和分类决策的设计[9]又是模式匹配的核心。在现有的分类器设计[10-11]中,经常使用的有:动态时间规整(Dynamic Time Warping,DTW)分类器、基于人工神经网络(Artificial Neural Networks,ANN)分类器、基于高斯混合模型(GMM)分类器、基于Bayes规则的分类器、基于HMM分类器[12]等。

本文重点讨论语音信号预处理中技术及实现,对训练和识别技术不再做研究描述。

【参考文献】

[1]尹岩岩.基于语音识别与合成的低速率语音编码研究[D].上海师范大学,2013.

[2]伟伟.通信系统中语音质量评价的研究[D].北京邮电大学,2014.

[3]朱淑琴.语音识别系统关键技术研究[D].西安电子科技大学,2004.

[4]王伟臻.基于神经网络的语音识别研究[D].浙江大学,2008.

[5]钟林鹏.说话人识别系统中的语音信号处理技术研究[D].电子科技大学,2013.

[6]周刚,周萍,杨青.一种简单的噪声鲁棒性语音端点检测方法[J].测控技术,2015,(02):31-34.

[7]薛胜尧.基于改进型双门限语音端点检测算法的研究[J].电子设计工程,2015,(04):78-81.

[8]惠博.语音识别特征提取算法的研究及实现[D].西北大学,2008.

[9]张宁.基于决策树分类器的迁移学习研究[D].西安电子科技大学,2014.

[10]汪云云.结合先验知识的分类器设计研究[D].南京航空航天大学,2012.

模式识别技术范文第2篇

背景

红外光谱法(FTIR)指的是用红外光照射植物叶片后,红外光谱的某波长区域会被此叶片成分内的分子所吸收。被吸收的红外光波长和被吸收的程度(称为吸收度或者透过率)根据成分的不同而有所差异,基于这样的规律,可以定性分析植物叶片内物质的官能团并获取化学结构信息。进一步根据Lambert-Beer定律公式可以得出吸光度A与浓度成一定比例,从而使用红外光谱法进行定量分析。衰减全反射法简称为ATR,利用光波入射时,入射面内偏振的单色平面光波在密-疏媒质的界上全反射时,表面共振激发后光强发生显著衰减的原理,是红外光谱常用的一种采样方式,采样时用到一种高折射率的晶体,该晶体是一种无损非接触的快速红外检测技术。ATR-FTIR方法利用红外光的透入深度与入射光的波长、样品和晶体之间折射率的关系来获得待测叶片内物质含量的光谱特性。模式识别(Soft Independent Modeling of ClassAnalogy,SCMIA)是一种基于类模型带监督的模式识别方法,其利用同一类叶片样本具有相似的特征,在一定的空间内,属于同一类的样本就会聚集在一定的空间区域内,不同的样本就会在空间内显著的分开并具有明显的边界[1]。因此可利用因子分析法针对随机选择的80%样本建立训练集中每一种杂草的样本,从而建立聚类分析模型,然后利用剩余的20%样本计算这些样本到模型的SCMIA距离,判别该样本属于哪一种杂草。

材料和方法

首先采集不同s草活体叶片的ATR谱图,通过分析不同杂草叶片红外谱图中的脂类特征吸收峰和多糖类成分吸收峰,利用不同叶片里含有多糖成分的不同来区别。作为补充手段可以采用杂草叶片含水量显著差异的区别利用水特征吸收峰来进行甄别。然后处理光谱数据,预先对原始光谱数据进行多元散射校正(MSC)和平滑处理,消除其采样的误差[2],最后利用前几个主成分建立识别分类图。为了使得识别的光谱数据计算量图能显著减小,通过主成分载荷图曲线筛选几组特征光谱作为变量进行聚类识别,这样提高运算速度后可以使得变量作业机械系统能够利用模型进行在线识别(图1)。

结语

通过光谱手段对杂草进行鉴别具有快速、准确、非接触的优势,其成本低,实时性好,非常适合变量作业机械传感技术采用,是一种有潜力的可行方法。通过试验初步效果看,温室内杂草相对大田而言测量条件比较理想,影响因素较少,因此可以采用几个较窄的特征波长带对杂草种类进行甄别。需要注意的是,当作为变量机械系统的传感器使用时,就面临在线动态识别的问题,光照、水分、土壤、病虫害等因素也需要综合考虑。

另一方面,温室杂草识别的后续应用除了获得温室土壤的草害信息外,还包括喷药除草或物理方法铲除杂草(图2)。温室中杂草的控制如不适合喷洒除草剂,也可以用除草铲去除杂草,通过自动控制除草铲的升降来定点清除杂草。

总体而言,杂草的防控采用光谱手段的优势很明显,但外界因素对光谱识别精度的影响也不能忽视,扬长避短,面向实际问题,这一领域还有很大的发展空间。

参考文献

模式识别技术范文第3篇

关键词 车辆牌照 识别技术 模块

中图分类号:U491 文献标识码:A

0引言

随着智能化交通管理的不断发展,电子收费等就成了具体要解决的难题,尤其是车辆牌照的自动识别技术更成了智能化交通管理发展的瓶颈。

车辆牌照识别技术指的是一个专用的计算机模拟视觉系统,从特定目标中获取出车牌的图像,并通过分割字符等技术,对车辆牌照进行识别,涉及到模式识别技术、人工智能等,可以实时监控出车牌的数字以及字母等,通过电脑算法给出以数据形式的运行结果,实现车辆牌照自动识别。

车辆牌照识别技术全面的应用了图像处理技术,模式识别方法和人工智能技术。主要处理监测动态的视频信息中包含车牌的图像,并针对复杂情况的车牌实现定位和识别。

1国内外发展现状

国外一些发达国家对于迅猛发展的现代交通产业的适应性进步,源于上个世纪的80年代,发达国家就已经开始把图像处理相关技术应用到公路交通等的自动化管理体系中,继而开始了对车辆牌照的识别研究。其中包括车速检测方向、车流量检测方向、车外观检测方向和车牌牌照识别的检测以及车辆的事故处理检测等。

最早的交通系统管理中应用的图像处理相关技术比较单一,就是利用不含有车辆的一副图像做为参照图像,对获取的图像与参照图像进行分析和比较图像的灰度,再采用差分的方式,对车辆区域进行计算。这样可以大略的得出车辆的即时车速,单位时间通过的车流量统计以及道路的承载力等。

车辆牌照识别技术经过多年的不断发展完善,在许多国家已经有了很多电子收费系统、自动识别系统都应用了该技术,比如optasia公司和亚洲视角公司的产品,不过这些产品都是针对英文和数字进行识别,不能识别出汉字。近些年,我国也有一些车辆牌照识别系统的应用,比如汉王公司的系统,取得了一定的突破,技术和算法都相对完善。

2车辆牌照识别技术

车辆牌照识别系统主要可以分为:图像采集模块、图像处理模块、车牌定位模块、字符切分模块和字符识别模块。如图所示:

图 车辆牌照识别技术流程

(1)图像采集模块。该模块通过对交通主管部门指定的摄像机与图像采集卡或者与笔记本电脑等实施连接记性图像采集,把图像模拟信号转变成数字信号。

(2)图像处理模块。该模块是对图像采集模块获取到的图像进行图像的增强化、恢复以及变换等电脑处理,用以把车牌特征明显化,使得车牌区域更容易被提取。

(3)车牌定位模块。该模块是以人眼睛的视觉方式,依据车牌上的字符区域的具体特征,利用二值化图像提取出相关的特点,定位出最吻合的牌照特征的目标区域。由于图像采集中的噪声和复杂的背景图案都能对定位进行干扰,所以说,车牌定位模块是整个车辆牌照识别技术中的难点和关键点。

(4)字符分割模块。该模块是从获取到的牌照信息的特定区域中分隔出单个的字符,用于接下来的字符识别模块。车牌上的信息除了一个汉字之外,所有的都是数字和字母,那么每个字符都是独立并且单独相连,所以可以用特殊的计算方法进行字符的分割功能。

(5)字符识别模块。该模块是利用分割完成的字符,进行文本形式转化,并储存到数据库中或者直接通过客户终端显示出来的功能。

3小结

本文对车辆牌照识别技术进行了分析与研究,从车辆牌照识别技术的概念,主要研究内容进行了阐述,对国内外的发展情况进行了阐述,同时对车辆牌照的识别相关技术进行了全面的流程化分析。为今后车辆牌照识别技术的进一步应用和研究提供了理论保证。

参考文献

[1] 黎绍发,陈智斌.车牌自动识别技术的研究[J].机电工程技术,2003,18(l):55-57.

[2] 徐建闺,贺敬凯.车型与车牌自动识别技术分析[M].交通与计算机,2002,20(2):7-12.

[3] 张苗,妇匕明海,顾勤龙.车辆牌照识别系统的一个新的实现方法[J].控制工程,2003,10(1):59-61.

模式识别技术范文第4篇

关键词:语音识别;特征提取;模式匹配;模型训练

中图分类号:TP312 文献标识码:A文章编号:1007-9599 (2010) 05-0000-01

Summarization on Speech-Identification Technology

Liu Yu1,2,Ma Yanli1,Dong Beibei1

(1.Hebei North University,Information Science and Engineering College,Zhangjiakou075000,China;2.Tianjin University,Electronics and Information Engineering College,Tianjin300072,China)

Abstract:This text briefly introduces the theoretical basis of the speech-identification technology,its mode of classification,the adopted key technique and the difficulties and challenges it have to face.Then,the developing prospect ion and application of the speech-identification technology are discussed in the last part.

Keywords:Speech identification;Character Pick-up;Mode matching;Model training

一、语音识别技术的理论基础

语音识别技术:是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高级技术。语音识别以语音为研究对象,它是语音信号处理的一个重要研究方向,是模式识别的一个分支,涉及到生理学、心理学、语言学、计算机科学以及信号处理等诸多领域,甚至还涉及到人的体态语言(如人在说话时的表情、手势等行为动作可帮助对方理解),其最终目标是实现人与机器进行自然语言通信。

不同的语音识别系统,虽然具体实现细节有所不同,但所采用的基本技术相似,一个典型语音识别系统主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。此外,还涉及到语音识别单元的选取。

(一) 语音识别单元的选取

选择识别单元是语音识别研究的第一步。语音识别单元有单词(句)、音节和音素三种,具体选择哪一种,由具体的研究任务决定。

单词(句)单元广泛应用于中小词汇语音识别系统,但不适合大词汇系统,原因在于模型库太庞大,训练模型任务繁重,模型匹配算法复杂,难以满足实时性要求。

音节单元多见于汉语语音识别,主要因为汉语是单音节结构的语言,而英语是多音节,并且汉语虽然有大约1300个音节,但若不考虑声调,约有408个无调音节,数量相对较少。因此,对于中、大词汇量汉语语音识别系统来说,以音节为识别单元基本是可行的。

音素单元以前多见于英语语音识别的研究中,但目前中、大词汇量汉语语音识别系统也在越来越多地采用。原因在于汉语音节仅由声母(包括零声母有22个)和韵母(共有28个)构成,且声韵母声学特性相差很大。实际应用中常把声母依后续韵母的不同而构成细化声母,这样虽然增加了模型数目,但提高了易混淆音节的区分能力。由于协同发音的影响,音素单元不稳定,所以如何获得稳定的音素单元,还有待研究。

(二) 特征参数提取技术

语音信号中含有丰富的信息,但如何从中提取出对语音识别有用的信息呢?特征提取就是完成这项工作,它对语音信号进行分析处理,去除对语音识别无关紧要的冗余信息,获得影响语音识别的重要信息。对于非特定人语音识别来讲,希望特征参数尽可能多的反映语义信息,尽量减少说话人的个人信息(对特定人语音识别来讲,则相反)。从信息论角度讲,这是信息压缩的过程。

线性预测(LP)分析技术是目前应用广泛的特征参数提取技术,许多成功的应用系统都采用基于LP技术提取的倒谱参数。但线性预测模型是纯数学模型,没有考虑人类听觉系统对语音的处理特点。

Mel参数和基于感知线性预测(PLP)分析提取的感知线性预测倒谱,在一定程度上模拟了人耳对语音的处理特点,应用了人耳听觉感知方面的一些研究成果。实验证明,采用这种技术,语音识别系统的性能有一定提高。

也有研究者尝试把小波分析技术应用于特征提取,但目前性能难以与上述技术相比,有待进一步研究。

(三)模式匹配及模型训练技术

模型训练是指按照一定的准则,从大量已知模式中获取表征该模式本质特征的模型参数,而模式匹配则是根据一定准则,使未知模式与模型库中的某一个模型获得最佳匹配。

语音识别所应用的模式匹配和模型训练技术主要有动态时间归正技术(DTW)、隐马尔可夫模型(HMM)和人工神经元网络(ANN)。

DTW是较早的一种模式匹配和模型训练技术,它应用动态规划方法成功解决了语音信号特征参数序列比较时时长不等的难题,在孤立词语音识别中获得了良好性能。但因其不适合连续语音大词汇量语音识别系统,目前已被HMM模型和ANN替代。

HMM模型是语音信号时变特征的有参表示法。它由相互关联的两个随机过程共同描述信号的统计特性,其中一个是隐蔽的(不可观测的)具有有限状态的Markor链,另一个是与Markor链的每一状态相关联的观察矢量的随机过程(可观测的)。隐蔽Markor链的特征要靠可观测到的信号特征揭示。这样,语音等时变信号某一段的特征就由对应状态观察符号的随机过程描述,而信号随时间的变化由隐蔽Markor链的转移概率描述。模型参数包括HMM拓扑结构、状态转移概率及描述观察符号统计特性的一组随机函数。按照随机函数的特点,HMM模型可分为离散隐马尔可夫模型(采用离散概率密度函数,简称DHMM)和连续隐马尔可夫模型(采用连续概率密度函数,简称CHMM)以及半连续隐马尔可夫模型(SCHMM,集DHMM和CHMM特点)。一般来讲,在训练数据足够的,CHMM优于DHMM和SCHMM。HMM模型的训练和识别都已研究出有效的算法,并不断被完善,以增强HMM模型的鲁棒性。

人工神经元网络在语音识别中的应用是现在研究的又一热点。ANN本质上是一个自适应非线性动力学系统,模拟了人类神经元活动的原理,具有自学、联想、对比、推理和概括能力。这些能力是HMM模型不具备的,但ANN又不个有HMM模型的动态时间归正性能。因此,现在已有人研究如何把二者的优点有机结合起来,从而提高整个模型的鲁棒性。

二、语音识别的困难与对策

目前,语音识别方面的困难主要表现在:

(一)语音识别系统的适应性差,主要体现在对环境依赖性强,即在某种环境下采集到的语音训练系统只能在这种环境下应用,否则系统性能将急剧下降;另外一个问题是对用户的错误输入不能正确响应,使用不方便。

(二)高噪声环境下语音识别进展困难,因为此时人的发音变化很大,像声音变高,语速变慢,音调及共振峰变化等等,这就是所谓Lombard效应,必须寻找新的信号分析处理方法。

(三)语言学、生理学、心理学方面的研究成果已有不少,但如何把这些知识量化、建模并用于语音识别,还需研究。而语言模型、语法及词法模型在中、大词汇量连续语音识别中是非常重要的。

(四)我们对人类的听觉理解、知识积累和学习机制以及大脑神经系统的控制机理等分面的认识还很不清楚;其次,把这方面的现有成果用于语音识别,还有一个艰难的过程。

(五)语音识别系统从实验室演示系统到商品的转化过程中还有许多具体问题需要解决,识别速度、拒识问题以及关键词(句)检测技术等等技术细节要解决。

三、语音识别技术的前景和应用

语音识别技术发展到今天,特别是中小词汇量非特定人语音识别系统识别精度已经大于98%,对特定人语音识别系统的识别精度就更高。这些技术已经能够满足通常应用的要求。由于大规模集成电路技术的发展,这些复杂的语音识别系统也已经完全可以制成专用芯片,大量生产。在西方经济发达国家,大量的语音识别产品已经进入市场和服务领域。一些用户交机、电话机、手机已经包含了语音识别拨号功能,还有语音记事本、语音智能玩具等产品也包括语音识别与语音合成功能。人们可以通过电话网络用语音识别口语对话系统查询有关的机票、旅游、银行信息,并且取得很好的结果。

语音识别是一门交叉学科,语音识别正逐步成为信息技术中人机接口的关键技术,语音识别技术与语音合成技术结合使人们能够甩掉键盘,通过语音命令进行操作。语音技术的应用已经成为一个具有竞争性的新兴高技术产业。

参考文献:

[1]科大讯飞语音识别技术专栏. 语音识别产业的新发展.企业专栏.通讯世界,2007.2:(总l12期)

[2]任天平,门茂深.语音识别技术应用的进展.科技广场.河南科技,2005.2:19-20

[3]俞铁城.科大讯飞语音识别技术专栏.语音识别的发展现状.企业专栏.通讯世界,2006.2 (总122期)

[4]陈尚勤等.近代语音识别.西安:电子科技大学出版社,1991

模式识别技术范文第5篇

关键词:云计算;可信认证;安全

云计算是继同构计算、异构计算、元计算、网格计算、普适计算之后最有希望的计算模式。云计算的初始定义来自IBM公司2007底的云计算计划,在该计划中将云计算平台定义为:按用户的需求动态地部署、配置、重配置以及取消服务等伸缩性平台。

看到其中蕴含的巨大商机和潜力,一些知名的IT企业相继推出自己的云服务。典型SaaS如:Google的APP Engine、Microsoft的Live Meeting、Office Live;典型的Paas如:Google Code、Facebook developers以及Saleforce提供的;典型的IaaS如:IBM的“兰云”,Microsoft的Azure、Amazon的EC2/S3/SQS等等,而且一些新的应用还在不断的推出。但在这云应用繁荣的背后,隐藏大量以风险。以前的风险依然存在,在新的环境中还可能造成更大的危害。新出现的风险表现在:1)传统的安全域的划分无效,无法清楚界定保护边界及保护设备和用户;2)用户的数量和分类不同,变化频率高,动态特性和移动特性强;3)数据、服务,通信网络被服务商所控制,如何确保服务的可用性,机密性等,使用户相关利益得到保护。

可信云是可信技术在云计算中的扩展,相关技术即可信云安全技术。本文对可信云环境中三种关键的安全技术即:可信识别技术、可信融合验证技术做了一些研究。这两种安全技术不仅把设备作为可信计算根,更把设备使用人作为可信计算的根,以信任根计算为计算手段,达到可信跟计算认证目的。可信识别技术将识别技术和识别行为密钥技术的相结合,将识别行为产生的密钥编码和设定的行为密钥进行来进行判别,克服误识率和拒识率的矛盾,增强防范身份假冒,身份伪造能力;可信密码学技术是对由可信根生成的可信点集矩阵进行基于拓扑群分形变换操作。可信密码学的密钥和算法都是随机可信的生物特征信息,因此密钥和算法凭都具有可验证性。采用可信模式识别技术和可信密码学技术,结合“零知识”,身份无法伪造,一旦应答,双方均不能否认。

1 可信识别技术

传统的模式识别技术是指对用户的生物特征进行测量,和预留的模板数据进行比较,依据匹配结果进行识别。这些生物特征包括指纹、声音,人脸、视网膜、掌纹、骨架、气味乃至于签名笔迹、图章印痕等等。传统的识别技术具有“拒识率”和“误识率”的缺陷,具体说就是:匹配阀值增大,拒识率升高,“误认率”下降;匹配阀值减小,拒识率降低,“误认率”升高。生物特征采样点的数量有限,容易引起误判。在云计算环境中,其固有的虚拟性特征以及透明性不足,使身份认证,可信登录更是面临着比传统计算环境更大的风险。

可信识别技术是传统识别技术和识别行为密钥技术的结合。识别行为或自然形成或人为设定,如人为设定的2次人脸对比规则是先张嘴、后闭嘴,指纹对比规则是先拇指、后食指等。将识别行为编排成组,为每组识别行为秘密设定一个数,该数是该组累积成功识别次数。可信识别失败并不是以一两次失败就断定此次识别失败,而是把失败的次数记录下来,直到超过预先设定的阀值才断定识别失败。可信识别成功也不是依靠一两次成功就断定识别成功,而是累计该组的成功识别次数,直到等于该组秘密设定的成功次数为止,才断定本组识别成功。而非法用户不能猜出识别的组数以及每组识别的次数,因此不能假冒合法用户。只有指定的每组识别都达到要求。才能最终判别是真正的合法用户。

传统的识别行为征信息的阀值起着关键作用,阀值给定,拒识率和误视率是存在难以克服的矛盾。可信的识别行为密钥,并不取决于个别识别行为“误识率”的高低,而取决于客户设置的有效识别行为密钥编码。

可信识别的技术优势:可信识别模式在传统的模式识别的基础上,结合组间识别行为特征,非识别数,编组识别设定数,各组识别行为总数等措施,从而具有一下优势:1)可以设置可信识别策略设计;2)具有区别错误拒识设置;3)具有区别误识和仿冒设置;4)具有统计结论模式。从而弥补了传统识别就“拒识率”和“误识率”的技术缺陷。

2 可信验证

可信融合验证技术采用可信模式识别技术和可信密码学技术,结合“云端零知识证明”,实现可信云端“零知识”认证,PKI等功能。

本文对云计算的一些关键安全技术作了一些探讨。可信云计算的识别技术是以可信的特征信息和识别行为相结合,通过判断对各组识别行为识别的成功数,克服识别模式中的拒识率和误识率的技术缺陷。可信融合验证技术是利用可信识别技术和可信加密/解密技术。实现双方“零知识”。具备身份无法伪造,保密性高,具有不否认性的特点。这些可信云安全技术的进一步研究以及随之而来的应用的展开。一定可以缓解客户对云计算的忧虑,催进云计算这种新的计算模式的发展。

[参考文献]

[1]Weichao Wang,Zhiwei Li,Rodney Owens.Secure and Effcient Access to Outsourced Data.CCSW '09:Proceedings of the 2009 ACM workshop on Cloud computing security,pages 55-65.November 2009.

相关期刊更多

模式识别与人工智能

北大期刊 审核时间1-3个月

中国科学技术协会;中国自动化学会

金刚石与磨料磨具工程

北大期刊 审核时间1-3个月

郑州磨料磨具磨削研究所有限公司

模型世界

省级期刊 审核时间1个月内

北京市体育局