首页 > 文章中心 > 炭纤维

炭纤维

炭纤维

炭纤维范文第1篇

1实验方法

1.1材料及制备实验用环氧树脂型号为nanopoxE470,包含25%的球形二氧化硅纳米颗粒,同类型双酚A类纯环氧树脂DGEBA,固化剂为胺类固化剂HE600,Nanoresin公司;抗开裂剂聚癸二酸酐PSPA,温州清明化工公司。实验用纤维为高模量炭纤维,日本东丽公司。纤维置于丙酮溶液中抽提24h以除去生产过程中涂覆在其表面的环氧树脂涂层。通过抽提后炭纤维的质量变化确认涂层的除去。将除去环氧树脂涂层的纤维束置于分散了50%二氧化硅纳米颗粒的丙酮溶液中(德国Merck公司),此溶液中不含环氧树脂,于50℃恒温水浴中超声4h,取出后烘干除去丙酮溶液,制成表面涂有纳米颗粒的炭纤维。将表面涂覆二氧化硅纳米颗粒的纤维经马弗炉800℃灼烧3h,质量分析显示纳米颗粒含量为4.9g/m2。将经抽提处理表面有纳米颗粒和无纳米颗粒的两种纤维单丝从纤维束中抽出,粘贴在哑铃状不锈钢模具中央,然后将混合了固化剂和抗开裂剂的环氧树脂从一端连续地浇注到模腔中,浇注后置于烘箱中按如下程序进行固化:90℃×30min,120℃×60min,140℃×30min,160℃×120min,固化完成后缓慢冷却至室温。表面无二氧化硅纳米颗粒炭纤维/纯环氧树脂复合材料体系代号为A0,表面无二氧化硅纳米颗粒/25%二氧化硅纳米颗粒基体复合材料体系代号为A14,表面有二氧化硅纳米颗粒/纯环氧树脂体系代号为A0S。1.2样品测试哑铃状单纤维样品被0.001%s-1的拉伸速率缓慢连续拉伸,用平行放置的加有偏振片的光学显微镜观察20mm量距内纤维断裂数、纤维断裂长度和断点附近形貌等信息。扫描电子显微镜(S-4800),被用于观察在单纤维断裂实验中被破坏的样品断面。场发射透射电子显微镜(TecnaiG2F20U-TWIN)被用于观察二氧化硅纳米颗粒在环氧树脂中的分散状态。树脂基体力学性能的测试按照美国材料与试验协会(ASTM)D-638标准进行。

2实验结果与讨论

2.1材料基本性能表征图1为炭纤维和环氧树脂基本性能表征。图1(a)为包含25%二氧化硅纳米颗粒的环氧树脂基体透射电镜照片。从图中可以观察到,二氧化硅纳米颗粒均匀分散在环氧树脂基体中,平均直径约为25nm。25%二氧化硅纳米颗粒的加入将环氧树脂基体的抗拉强度和弹性模量从60.2MPa±3.7MPa和2.37GPa±0.04GPa提高到了73.6MPa±5.5MPa和3.85GPa±0.24GPa,分别有22.2%和62.4%的提高。这使得纳米颗粒在提高基体力学性能的前提下,增强纤维/树脂界面性能成为可能。图1(c),(e)为炭纤维表面涂覆二氧化硅前后的SEM照片,图1(d),(f)为二氧化硅涂覆前后的EDS能谱。从图1(e),(f)可以看出,二氧化硅纳米颗粒均匀地覆盖了炭纤维表面,经计算,表面覆盖二氧化硅含量约为4.9g/m2。

2.2单纤维断裂测试单纤维断裂实验中的双折射现象可以动态监测复合材料的破坏过程。在偏光显微镜下,纤维断点周围出现以断点为中心向外逐步减弱的蝴蝶状双折射光斑,主要是材料的界面剪切和摩擦应力造成的[16]。胡蝶状光斑代表良好界面,而狗棒状光斑代表脱粘界面。在较低应变下,三种体系断点处的双折射光斑均呈蝴蝶状(见图2(a),(b),(f),(g),(k),(l)),这表明在低形变下,炭纤维与基体黏结良好,不同体系差异不大。随着基体应变的增加,复合材料断点数按A0,A0S,A14的顺序逐渐增加(见图2(m),(h),(c))。在约2.0%基体应变时,A0体系炭纤维断点不再增加并出现脱粘现象,开始出现断点处脱粘现象,而A0S和A14体系仍然黏结良好(图2(d),(i),(n)),以上信息表明复合材料中的纳米颗粒的存在在一定程度上抑制了界面脱粘的发生,改善了界面性能。图2((e),(j),(o))为撤销载荷后的样品双折射光斑,图中箭头指向纤维断点,可以发现A14体系的断点处出现了明显的基体开裂,A0S体系的基体开裂要小一些,而纯树脂体系的基体只有一条细微的裂缝,这种差异也反映了三种体系界面黏结性能的差异。当复合材料受外力作用时,纤维由于延伸率较低而首先断裂,纤维断点成为材料中的缺陷,形成应力集中点,由于此时界面剪切较强,不能迅速脱粘或产生滑移,以缓解应力集中,从而导致基体在应力集中点产生破坏,形成一条成锐角的裂缝。如果界面黏结良好,裂缝将沿着基体扩展;如果界面作用不强,破坏将沿界面方向扩展,导致界面脱粘或者纤维拔出[17]。结合实验中观察到的现象,可以认为在环氧树脂基体中和炭纤维表面上含有二氧化硅纳米颗粒的体系拥有更好的界面性能。下面将通过定量的方法进一步表征这种增强作用。经典单纤维断裂测试样品通常是单根脆性纤维固化在相对韧性的基体中。随着基体应变的增加,纤维上开始出现断点,且断点数不断增多,纤维断裂片段的长度相应减小。当纤维所受应力不再大于断裂纤维片段的断裂强度时纤维上断点不再增加,此时纤维处于饱和断裂状态,断裂纤维片段的长度被称为临界断裂长度[18]。Kelly和Tyson基于简化的界面力平衡方程[19],得出了用来计算界面抗剪强度(IFSS)的表达式:式中:σf和d分别为纤维的临界抗拉强度和直径;lc是临界断裂长度。根据式(1),只要得出临界断裂长度就能计算出界面抗剪强度。A0,A0S和A14的饱和临界断裂长度分别为382.2μm±18.3μm,347.7μm±19.0μm和333.9μm±16.2μm。通过式(1),三种体系的IFSS分别为30.1MPa±1.3MPa,33.2MPa±1.2MPa和34.5MPa±1.4MPa,见图3。A0体系纤维表面4.9g/m2的二氧化硅纳米颗粒将IFSS提高了10.0%,而A14体系树脂基体中25%的纳米颗粒将IFSS提高了15.0%。在A14体系中,纳米颗粒在纤维表面含量约为5.4g/m2,与A0S的4.9g/m2相当,因此A14体系更高的IFSS可能来源于树脂基体高的抗剪强度的贡献[20]。综合以上信息,二氧化硅纳米颗粒起到了提高炭纤维/环氧树脂界面抗剪强度和抑制界面脱粘现象的作用。分散于基体中和涂覆在炭纤维表面的纳米颗粒均可以起到提高界面性能的作用。

2.3断面形貌分析由图1(b)和图4可见,A14体系断面处可见大量均匀分散的二氧化硅纳米颗粒,纤维和树脂基体之间的黏结良好,没有出现界面脱粘现象;与A14体系类似,A0S体系拥有类似的界面黏结状态;A0体系断面则表面十分光滑,出现明显的界面脱粘现象。以上信息表明,均匀分散在基体中和涂覆在炭纤维表面的二氧化硅纳米颗粒提高了纤维/树脂界面的黏结性能。Lew等[21]用简单的超声方法将3.5%(质量分数)的二氧化硅纳米颗粒分散于环氧树脂中,发现纤维/树脂界面性能并未提高。二氧化硅纳米颗粒分散状态可能是导致不能提高界面抗剪性能的主要因素。本工作所采用的二氧化硅纳米颗粒通过溶胶-凝胶方法制备得到,可以实现在基体中的均匀分散,因此纳米颗粒的分散状态可能是A0S和A14体系纤维/树脂界面提高的重要原因。另一方面,二氧化硅纳米颗粒的平均尺寸是25nm,有利于将纳米颗粒镶嵌到沟槽中形成锁扣结构增强两相界面[22]。

炭纤维范文第2篇

炭纤维是一种主要以sp2杂化形成的一维结构炭材料。根据其合成方式和直径不同可分为:有机前躯体炭纤维(pan基、粘胶丝基、沥青基炭纤维)、气相生长炭纤维(vapor-grown carbon fiber 简称 vgcf)、气相生长纳米炭纤维(vapor-grown carbon nanofiber 简称vgcnf)、炭纳米管(carbon nanotube 简称cnt),如图1所示。自从1991年iijima [1] 发现纳米炭管以来,由于其特殊的物理性能和力学性能而引起 科学 家们的广泛兴趣,同时也促进了气相生长炭纤维在纳米尺度上即气相生长纳米炭纤维的 研究 。

气相生长纳米炭纤维一般以过渡族金属fe、co、ni 及其合金为催化剂,以低碳烃化合物为碳源,氢气为载气,在873 k~1 473 k下生成的一种纳米尺度炭纤维。它与一般气相生长炭纤维(vgcf)所不同的是,纳米炭纤维除了具有普通vgcf的特性如低密度、高比模量、高比强度、高导电等性能外,还具有缺陷数量非常少、比表面积大、导电性能好、结构致密等优点,可望用于催化剂和催化剂载体、锂离子二次电池阳极材料、双电层电容器电极、高效吸附剂、分离剂、结构增强材料等。tibbetts[2]在研究了vgcf的物理特性以后,发现小直径气相生长炭纤维的强度比大直径的强度要大。

endo[3]用透射电镜观察到气相生长法热解生成的炭纳米管和电弧法生成的炭纳米管的结构完全相同。所有这些,都使气相生长纳米炭纤维的研制工作进入了一个新阶段。

另外,从图1的直径分布来看,纳米炭纤维处于普通气相生长炭纤维和纳米炭管之间,这决定了纳米炭纤维的结构和性能处于普通炭纤维和纳米炭管的过渡状态,因而,研究普通炭纤维、纳米炭纤维、纳米炭管的结构和性能的差异将具有重要的意义。

2 气相生长纳米炭纤维的制备 方法 与 影响 因素

刘华的实验结果表明vgcf的强度随着直径的减小而急剧增大[4]。tibbetts[2]在研究vgcf的物理特性时,也预测小直径的vgcf要比大直径的vgcf强度要大得多。由于vgcf的直径主要是由催化剂颗粒的大小来决定的[5],因此大批量生产vgcnf的关键 问题 是催化剂颗粒的细化。

目前 ,vgcnf的制备主要有三种方法:基体法[6,7]、喷淋法或者流动催化剂法[8]和改进的流动催化剂法[9]。所谓的基体法是将石墨或陶瓷作基体,施以纳米级催化剂颗粒做“种籽”, 高温下通入碳氢气体化合物,在催化剂的作用下碳氢气体分解并在催化剂颗粒的一侧析出纳米级纤维状炭。例如,rodriguez[10]在基体上喷洒超细催化剂粉末,即用所谓的基体法高温降解碳氢化合物气体制备出50 nm~80 nm的vgcnf。这种基体催化剂方法可以制备出高质量的vgcnf。但是,超细催化剂颗粒的制备非常困难,在基体上喷洒不均匀,而且纳米炭纤维只在有催化剂的基体上生长,因而产量不高,不可能 工业 化生产。tibbetts[8]用喷淋法或者流动催化剂法在一个垂直的炉子里成功地制备出了50 nm~100 nm的vgcnf。虽然这种方法提供了大量制备vgcnf的可能性,但是由于催化剂与碳氢气体化合物的比例难以优化,喷洒过程中铁颗粒分布不均匀,且喷洒的催化剂颗粒很难以纳米级形式存在,因此在制备纤维的过程中纳米级纤维所占比例少,而且总是伴有大量的炭黑生成。

为了解决以上两种方法的不足,充分利用基体法和喷淋法各自的优点,本研究小组用改进的气相流动催化剂法,在水应炉里,生长出10 nm~100 nm的vgcnf[9]。改进的流动催化剂法的主要特征是,催化剂并不是附着在基体上,也不象制备vgcnf所用的喷淋法或者流动催化剂法,将催化剂前驱体溶解在碳源溶液中,而是以气体形式同碳氢气体一起引入反应室,经过不同温区完成催化剂和碳氢气体的分解,分解的催化剂原子逐渐聚集成纳米级颗粒,因此分解的碳原子在催化剂上将会以纳米级形式析出纤维状炭。由于从有机化合物分解出的催化剂颗粒可以分布在三维空间内,因此其单位时间内产量可以很大,可连续生产,有利于工业化生产。

影响 气相生长炭纤维的因素很多, 研究 也较充分,如氢气的纯度、碳氢气体化合物的分压、氢气和碳氢气体化合物的比例、反应温度、催化剂(颗粒大小、形状、结晶构造)的选取、气体的流量、微量元素的添加(如s)等都会影响到vgcf的生长。由于vgcnf和vgcf一样也是双层结构,即由两种不同结构的炭组成,内部是结晶程度比较好、具有理想石墨结构、中间空心的初期纤维;外层是结晶程度比较差、具有乱层结构的热解炭层[9]。因此,影响气相生长炭纤维的因素,也将影响着vgcnf的生长。

(1) 氢气除了作载气外,还用以将fe、co、ni等的金属化合物还原成为起催化作用的fe、co、ni等单质。另外,还具有下列作用:(a)h2在金属表面上的化学吸附可以阻止石墨炭层的凝聚反应;(b)h2在金属表面上的化学吸附也可以弱化金属与金属间的结合力,使金属颗粒的大小适合于生长炭纤维[10];(c)h2的存在也可以使催化剂颗粒重构,以形成可以大量吸附碳氢化合物的表面[11]。

(2) 其它元素如硫的加入对vgcf的生长也产生很大影响,kim[12]在研究硫的吸附与碳在co做催化剂析出时的相关作用时发现:少量的硫可以促进金属表面的重构,防止催化剂失活。硫量过大,则会生成过多的硫化物,抑制催化剂的催化活性。另外,少量的硫也可以促进催化剂颗粒分裂,这对于生长高质量的纳米级vgcf具有非常重要的作用。

(3) 为了高效率生长vgcnf,催化剂一直是研究的热点。baker发现在铁磁性金属中添加第二种金属可以改变炭纤维的生长特性,产生非常高的有序结构[13],生长多种形态的炭纤维。而且可以减少催化剂颗粒直径,vgcf的产量和生长速率也有所提高[14]。人们也发现往过渡族金属(fe、 co、 ni) 中引入第二种金属同样也能影响vgcnf的形貌和特性[6, 7].chambers 等 在研究往co里加入cu对vgcnf的结构和性能的影响后, 发现所制备的vgcnf具有非常高的结晶性[7]。

另外, rodriguez [6] 用纯铁作催化剂制备出石墨片层平行于纤维轴向的ribbon 型的纳米炭纤维; 用fe-cu (7:3)作催化剂制备出石墨片层与纤维轴向呈一定角度的 herringbone 型的纳米炭纤维; 用硅基铁作催化剂制备出石墨片层垂直于纤维轴向的纳米炭纤维。所有这些现象都说明了催化剂颗粒的特性影响着纳米炭纤维的生长。

总之,氢气的分压、催化剂的选取、碳氢化合物的流量、微量元素的加入都会影响炭纤维的生长,对于vgcnf的制备,所有这些因素都必须加以考虑。

3 气相生长纳米炭纤维的生长机理

一般认为,vgcnf与vgcf一样是由两种不同结构的炭组成的,内层是结晶比较好的石墨片层结构(即纳米炭管),外层是一层很薄的热解炭,中间是中空管。这些结构特性决定了vgcnf两个不同的生长历程。即先是在催化剂表面气相生长纳米纤维,然后是在其上面热解炭沉积过程。其中,在催化剂表面气相生长纳米炭纤维可以分为以下几个过程:

(1) 碳氢气体化合物在催化剂表面的吸附;

(2) 吸附的碳氢化合物催化热解并析出碳;

(3) 碳在催化剂颗粒中的扩散;

(4) 碳在催化剂颗粒另一侧的析出,纤维生长;

(5) 催化剂颗粒失活,纤维停止生长。

目前 ,世界各国的 科学 家对vgcnf的生长机理还没有一个统一的认识,在许多方面还有争议。

例如:碳在催化剂颗粒中的扩散是靠温度梯度为推动力还是靠浓度梯度为推动力;真正起催化作用的是金属单质还是金属碳化物至今也是一个争论的焦点。

oberlin [5] 用fe-苯-h2体系生成了vgcf,并对催化剂颗粒的 电子 衍射进行 分析 ,发现有渗碳体fe3c的存在。audier[15]用选区电子衍射技术也发现了fe5c2和fe3c的存在。baker[16]在研究了各种fe的氧化物和碳化物的反应活性之后不同意渗碳体有催化活性的观点。当用很高浓度的渗碳体做催化剂时,没有发现炭纤维生长。

yang在 研究 h2对碳降解的作用时发现,fe3c表面对苯的热解无活性,通h2后恢复了金属性,则生长炭纤维的活性也恢复了。尽管金属碳化物有催化活性的说法与实验结果不符合,但碳化物的表面作用不可忽视。

另外,碳在催化剂颗粒中的扩散是靠温度梯度为推动力还是靠浓度梯度为推动力也是一个争论的焦点。最初,baker [16] 假定碳在催化剂颗粒中的扩散是靠温度梯度为推动力的。碳氢气体化合物在催化剂颗粒一侧放热分解,而在另一侧吸热析出。这样,就在催化剂颗粒中存在一个温度差,从碳氢气体化合物分解出的碳原子在这种温度梯度的作用下从催化剂颗粒的另一侧析出,生长炭纤维。

而holstein [18] 则认为碳在催化剂颗粒中的扩散是等温扩散,是靠浓度梯度为推动力的。rostrup-nielsen和trimm[19]也认为碳在催化剂颗粒中的扩散是靠浓度梯度为推动力的。holstein和boudart[20]通过 计算 得出当金属催化剂表面发生放热反应的时候,在气体/金属界面和金属/纤维界面所产生的温度差小于0.1k可以忽略。另外,rostrup-nielsen[19,21]也发现在催化剂颗粒表面发生吸热反应的纤维生长。因此,他们认为碳在催化剂颗粒的扩散是靠浓度梯度为推动力而不是靠温度梯度为推动力的。不论靠什么作推动力,炭纤维的生长速度主要由碳原子在催化剂颗粒中的扩散速率决定,则是不容置疑的[18]。当催化剂表面被热解碳完全覆盖而失去催化活性时,纤维就停止生长。

对于碳氢气体化合物催化热解析出碳和催化剂失活的 问题 ,许多 科学 家研究了金属与气体的界面反应。碳作为碳氢气体热解的最终产物有三种聚集状态:颗粒、片状及纤维状。随着反应条件不同,三种形态所占的比例将有所变化。当碳氢气体分子与催化剂颗粒相撞时,碳-氢、碳-碳键被削弱,再与气氛中的氢作用,各原子将重新组合,有人认为这时将产生一种活性很高的过渡态碳原子[22],它继续变化的方向有以下几个:

(1) 再与吸附在铁表面的氢和碳氢化合物结合;

(2) 与同类碳原子相连形成表面包覆碳;

(3) 进行催化剂体内扩散;

(4) 析出、连续长出炭纤维;

其中(2)与催化剂失活有关。

尽管上述生长过程,为典型的晶须状纤维提供了一个合理的解释,但对于分叉状、多方向状、螺旋状vgcf却不能自圆其说。对于vgcf的分叉现象,可能是由于碳以固态形式从催化剂中析出,这会对催化剂颗粒产生排挤力,这种排挤作用可能会使催化剂颗粒分裂为两个或更多的小颗粒,这些小颗粒对纤维的生长仍然起着催化作用,结果导致了vgcf的分叉。

对于双向状、多方向状、螺旋状vgcf的生长机理,人们还没有统一和明确的认识。 目前 也仅仅是一些推测,认为氢气和第二种金属的加入,会使催化剂颗粒重构,形成适于生长vgcf的多个晶面[15],然后是碳原子在颗粒中的扩散,在晶面上析出,生长vgcf。气相生长炭纤维尽管有大约二十年的研究和 发展 历史 ,但由于其生长过程的复杂性,人们对其生长机理的认识还远未完成,随着实验技术的发展,认识将更加深入。

4 气相生长纳米炭纤维的性能及 应用 前景

作为一维结构的vgcnf具有许多优越的性能,因此它的潜在应用十分广阔。

由于vgcnf的缺陷数量很少、结构致密,所以vgcnf具有高强度、高比模量的力学性能,其强度比普通 vgcf 大。并且vgcnf具有直径小、长径比大的特点,因此可以用于高级复合材料的增强体,也可以用于航空、航天、环境、工民建材料及日常生活用品及其它高 科技 领域。

vgcnf表面具有分子级细孔,内部也具有细孔,比表面积大,气体可以在vgcnf中凝聚,因此可以吸附大量气体,是极具潜力的储氢材料,也可用作高效吸附剂、催化剂和催化剂载体。

另外,纳米炭纤维还具有较高的导电性,可望用于锂离子二次电池阳极材料、双电层电容器电极等。

直径为10 nm~20 nm的炭纤维在结构上和纳米管的结构相似,使气相生长法代替电弧法制备高纯度的纳米炭管成为可能。总之,高质量的纳米级vgcf的大量制备、充分利用其特性,开发新的 应用 领域,将是人们为之努力的方向。

5 改进流动催化剂法制备的vgcnf

很久以前,人们就发现碳氢气体化合物通过过渡族金属表面催化降解可以析出微米级炭纤维,但直到九十年代才发现此种技术也可用来制备纳米炭纤维和纳米炭管。

本 研究 小组根据纤维直径大小主要由催化剂颗粒大小决定的这一事实,我们用易挥发的过渡族金属有机化合物析出的fe 、co、 ni原子可以凝聚成纳米级催化剂颗粒的特点,采用改进的流动催化剂法制备出纯净的纳米炭纤维。如以苯为碳源,以二茂铁为催化剂前驱体,以氢气为载气,在1373 k~1473 k下成功地制备出直径在5 nm~500 nm内可控的纳米炭纤维。并且经过一系列的实验研究,发现了一种vgcnf的生长促进剂-含硫化合物,它一方面可以有效地阻止无定形碳、炭黑等杂质的生成,另一方面可以大大增加vgcnf的产量和收率。实验装置如图2。得到的vgcnf外观上有两种形式。一种为薄膜状“织物”,非常薄;一种为块状,有弹性,得到的产物如图3(a), 3(b)所示。

实际上这些束状纤维是由许多单壁或者多壁纳米炭管组成的[23]。图 5(a) 和5(b)是块状产物的sem和tem形貌。从sem图中可以看出块状产物也非常纯净。纤维直径分布比较均一,而且大部分纤维可以观察到中空管的存在,纤维的表面也非常光滑。

用改进的流动催化剂法制备vgcnf不仅设备简单,而且能半连续或连续生产,制备的vgcnf具有直径分布比较均匀、产品纯度高等优点, 目前 正在深入研究该 方法 的放大技术。

6 小结

vgcnf是一种十分独特的纳米炭材料,具有许多与众不同的特性,如非常小的尺寸、独特的电学性能、特别优良的力学性能及吸附与催化特性。vgcnf具有十分广阔的应用前景,对其进行广泛而深入的基础和应用研究,具有十分重要的 科学 意义。

参考 文献

[1] iijima s.helical microtubules of graphitic carbon[j]. nature, 1991, 354(6348):56

[2] tibbetts g g, doll g l, gorkiewicz d w,et al. physical properties of vapor-grown carbon fibers[j].carbon, 1993, 31(7): 1039

[3] endo m, takeuchi k, kobori k,et al. pyrolytic carbon nanotubes from vapor-grown carbon fibers[j].carbon, 1995, 33(7):873

[4]  刘 华.气相生长炭纤维的结构及生长机理的研究[d].硕士毕业论文,沈阳:中科院金属研究所, 1985

[5]  oberlin a, endo m, koyama t. filamentous growth of carbon through benzene decomposition[j]. j cryst growth, 1976, 32(2): 335

[6] rodriguez n m, chambers a, baker r t k. catalytic engineering of carbon nanostructures[j]. langmuir, 1995, 11: 3862

[7] chambers a, rodriguez n m,baker r t k.influence of copper on the structural characteristics of carbon nanofibers produced from the cobalt-catalyzed decomposition of ethylene[j]. j mater res,1996, 11(2): 430

[8] tibbetts g g, gorkiewicz d w. a new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons[j]. carbon, 1993, 31(5): 809

[9] yue-ying fan, feng li, hui-ming cheng,et al. preparation, morphology and microstructure of diameter-controllable vapor-grown carbon nanofibers[j]. j mater res, 1998, 113 (8): 2342

[10]  rodriguez n m. a review of catalytically grown carbon nanofibers[j]. j mater res, 1993, 8(12): 3233

[11] krishnankutty n, rodriguez n m, baker r t k. effect of copper on the decomposition of ethylene over an iron catalyst[j]. j catal, 1996, 158(1): 217

[12]  kim m s, rodriguez n m, baker r t k. the interplay between sulfur adsorption and carbon deposition on cobalt catalysts[j]. j catal, 1993,143(2): 449

炭纤维范文第3篇

分析了竹浆纤维、竹炭纤维和长绒棉的性能特点,并结合原料的性能对混纺纱工艺进行探讨,对各工序的关键技术进行优化,最后对所开发的纱线性能进行测试,产品符合相关技术要求,可为针织企业开发具有抗菌防臭功效和柔软舒适手感的针织面料提供差异化的选择。

关键词:竹浆纤维;竹炭纤维;混纺纱;针织;性能测试

为了适应消费者的个性化需求,产品的差异化发展是未来纺织企业寻求突破的关键所在,多种纤维的混纺和交织已经成为行业发展的主流趋势。目前,针织产业呈现出以舒适和健康为主题的发展特征,特别是功能性纤维的应用越来越广泛。本文采用竹浆纤维和竹炭纤维两种新型纺织材料与长绒棉进行混纺,开发具有抗菌防臭功效和柔软舒适手感的针织用纱线。

1 原料选配

竹浆纤维是将自然生长的竹子做成浆粕而后喷丝而成的再生纤维素纤维,它具有有良好的透气性、瞬间吸水性和良好的染色性等特性[1]。竹炭纤维是以毛竹为原料经高温煅烧制得具有蜂窝化的竹炭微粒,然后与聚酯改性切片熔融纺丝制成,具有抑菌除臭、吸湿透气等特点[2]。选用的竹浆纤维、竹炭纤维和长绒棉纤维的性能如表1所示。

2 纺纱工艺设计

2.1 纺纱流程

竹浆纤维/长绒棉/竹炭纤维40/30/30混纺针织纱的纺纱工艺采取先分别制取竹浆纤维/竹炭纤维生条和棉生条,然后将两者进行并条、粗纱和细纱的加工。

竹浆纤维/竹炭纤维生条制作:FA002型抓棉机A006C型混棉机FA106 型开棉机FA141型单打手成卷机FA201B型梳棉机。

棉生条制作:FA006型抓棉机A006BS型混棉机FA106B型开棉机FA141型单打手成卷机FA201A型梳棉机。

竹浆纤维/长绒棉/竹炭纤维混纺针织纱:竹浆纤维/竹炭纤维生条+棉生条FA303型并条机(三道)FA456型粗纱机FA503型细纱机。

2.2 纺纱工艺

2.2.1 竹浆纤维/竹炭纤维生条制作

竹浆纤维和竹炭纤维均为化学纤维,整齐度和洁净度较高,适合一起进行前纺加工,为了减少静电现象并增加纤维之间的抱合力,可加3%抗静电剂进行预处理,然后在FA002型抓棉机上按照4:3的比例进行投料。根据两种纤维的特点,以“低速、少打”为原则,刀片伸出肋条距离为2.2mm,FA106型开棉机豪猪打手转速为480r/min,FA141型单打手成卷机综合打手转速为860r/min,棉卷干定量为400g/m。

FA201B型梳棉机采用变频器实现道夫无级调速,设有数控显示仪和多处安全自停装置。为了减少纤维的损伤,锡林与盖板和刺辊的隔距均应偏大掌握;为了利于纤维的转移,针布的工作角要偏小控制。梳棉工艺参数为:锡林转速340r/min,道夫速度为6.2r/min,刺辊转速810r/min,盖板速度105mm/min,盖板-锡林隔距为0.30mm、0.28mm、0.28mm、0.28mm和0.30mm,生条干定量为19.97g/5m。

2.2.2 棉生条制作

长绒棉的细度和强力较低,为了减少纤维在抓取过程中的损伤并且降低短绒和棉结的产生,FA006型抓棉机尽量采取精细抓棉的工艺设置,打手速度降低到1200r/min,抓棉小车的速度控制在10m/min左右。FA106B型鼻形打手是在FA106型豪猪开棉机基础上进行改造,增加了打击点,除杂效率更高。FA141综合打手转速760r/min,棉卷干定量为390g/m。

长绒棉在梳棉工序采取“轻定量、低速度、紧隔距”的工艺原则[3],锡林转速330r/min,刺辊转速790r/min,盖板速度为100mm/min,盖板与锡林隔距为0.18mm、0.16mm、0.16mm、0.16mm和0.18mm,生条干定量为17.27g/5m。梳理过程较为充分,并且降低了棉网结杂现象的产生。

2.2.3 并条工艺

将竹浆纤维/竹炭纤维混合生条和棉纤维生条按照70:30(4根混合生条和2根棉生条)的比例进行头道并条,然后分别采用8根进行二道和三道并条加工。并条工序采用“轻定量、慢车速和大隔距”的工艺原则,为了降低罗拉绕花现象,适当加大罗拉隔距和摇架加压。头并工艺参数:定量为18.95g/5m,后区牵伸为1.48倍,出条速度为165m/min;二并工艺参数:定量为18.5g/5m,后区牵伸为1.48倍,出条速度为168m/min;三并工艺参数:定量为17.65g/5m,后区牵伸为1.35倍,出条速度为171m/min,罗拉隔距均为9mm×14mm。

2.2.4 粗纱工艺

粗纱工序采用低车速和小的伸长率,以确保粗纱条干均匀;为了降低细纱工序的牵伸负担,粗纱采用轻定量。粗纱工艺参数:粗纱定量4.9g/10cm,前罗拉转速278r/min,罗拉隔距25mm×35mm,牵伸倍数7.32,捻系数62,捻度28.55捻/米。

2.2.5 细纱工艺

考虑到竹浆纤维和竹炭纤维的表面光滑和纺纱过程中易于出现毛羽等因素,细纱工序需要合理选择钢领及钢丝圈,并使用软弹胶辊来拓宽纵向的摩擦力界[4]。FA503细纱机工艺参数为:牵伸倍数为28.25,捻系数315,捻度73捻/10cm,锭子转速15000r/min,前罗拉速度260r/min,罗拉隔距18mm×27mm。

3 纱线性能测试

通过采取以上工艺流程和技术措施,开发的竹浆纤维/长绒棉/竹炭纤维40/30/30混纺针织纱的成纱质量指标为:单纱断裂强度为22.8cN/tex,强力CV值为9.5%,条干CV值为11.5%,+50%粗节为14个/km,-50%细节为11个/km,+200%棉结为25个/km。

4 结束语

由于竹浆纤维具有良好的吸湿透气性,竹炭纤维具有优异的抑菌及除臭性能,加之长绒棉的柔软舒适性,所开发的竹浆纤维、竹炭纤维和长绒棉三组分混纺针织纱可作为针织内衣、袜子等的原料,为针织面料产品的差异化和高附加值提供新的选择,必将受到市场的欢迎和消费者的喜爱。

参考文献:

[1] 姚桂香.长绒棉/竹浆纤维/Modal混纺细特纱的开发[J].上海纺织科技,2007,(12):44-45.

[2] 胡利强,刘进秀,等.竹炭纤维/圣麻纤维/天丝混纺面料开发实践[J].山东纺织科技,2011,(6):16-18.

[3] 孟昭民.精梳长绒棉5.8tex纱的节棉实践[J].棉纺织技术,2010,(4):47-49.

炭纤维范文第4篇

根据国家环保局统计,我国主要河流普遍存在有机污染,湖泊的水体富营养化严重,饮用水安全程度急速下降,而工业废水是水源污染的主要来源之一。目前被广泛运用的废水处理方法有化学法、物理法、生物法,以及这些方法的综合利用。电吸附技术用于废水处理具有安全、能耗低、无二次污染等优点,业界对其的关注度日益增长。

在电吸附过程中,具有吸附作用的电极材料起着非常重要的作用。与金属电极材料相比,新型炭材料具有更大的比表面积,良好的孔结构,化学惰性表面,一直是电吸附电极的首选材料。近几年,国内外主要研究包括以活性炭、活性炭纤维作为电极的电吸附技术。普通的活性炭在作电极的时候,往往需辅以高分子粘合剂成型,使得电阻增大。而活性炭纤维不仅具有丰富且分布窄的1~3 nm的微孔,使其具有1 000~3 000 m2/g的高比表面积,而且纤维直径一般在10~13μm之间,外表面积可达1.5~2m2/g,另外,还含有一定量的以羧基、羟基、羰基为主的含氧基团,容易与吸附质接触,扩散阻力小;且相对于粉末活性炭和粒状活性炭,其吸附和脱附速度更快,有利于吸附分离,所以被广泛应用于废水处理中。

1、电吸附处理废水的基本原理

1.1 电吸附理论及双电层模型

在电吸附体系中,由于电极与溶液的分界面上存在一个具有电容特性的,可以进行充电放电的双电层,使得电极提供电子或正电荷充当充电电荷,而溶液提供阳离子或阴离子用以充当放电电荷。在这个体系上施加不发生化学反应的电压的情况下’电极充电时水中的离子将会富集在电极上(见图1)。这样,如果电极具有一定的吸附作用,水中这部分富集离子将会被吸附。

Zou等人使用x射线衍射和N2吸附技术测试了活性炭(AC)以及中孔炭材料(OMC)表面的孔径大小和分布。发现AC中含有大量的微孔和一定量的中孔,而OMC中则主要是有序的中孔。他们利用循环伏安法测试表明:当OMC和AC分别作吸附工作电极时,其吸附的离子数量分别是11.6、4.3 μmol/g。根据这一结果,中孔比微孔在决定炭材料电吸附能力上更重要,提高中孔结构控制微孔结构是提升电吸附材料的两个重要策略。

此外,Han等人对电吸附前后ACF的表面结构进行了分析对比,结果表明ACF的比表面积大小和中孔(2~50 nm)容积随着电压增加而增大。该作者认为活性炭纤维在电极辅助下吸附能力的提升是因为在电压作用下ACF的比表面积和平均空洞尺寸大小增加了。

1.3 电吸附过程中的化学反应

很多研究表明在活性炭纤维电吸附处理废水的过程中,ACF所起的作用不仅仅是吸附作用。Fan等人在使用活性炭纤维对苋菜红偶氮染料进行电吸附研究中发现,当电压高于0.6 V时其阳极极化曲线上出现明显的氧化峰,说明在该体系里较高的电位会导致染料的氧化和降解。易芬云研究证实了ACF表面的羟基、酚羟基以及碱性基团能起到催化作用。陈水挟通过实验也发现某些有机物在吸附过程中可以使ACF发生氧化还原过程。

2、活性炭纤维电吸附处理废水的影响因素

2.1 活性炭纤维电吸附动力学

Han通过实验证实了活性炭纤维电吸附过程能更好地与Langmuir曲线拟合。从大量文献中发现,随着时间的增加,溶液中的吸附质浓度减小,而当溶液中的吸附质浓度减小到一定程度,或该吸附反应进行到一定时间,吸附质浓度保持稳定。Conway的实验也表明:在其他条件不变的情况下,ACF对NaSCN的吸附曲线也符合第一吸附理论。

2.2 pH值的影响

在利用电吸附方法处理含NaCl结晶紫染料废水的实验中,当pH值分别为3.0、5.5、7.0、9.1时,观察脱色率与时间的变化图线发现,在pH值为7.0时脱色效果最佳;当pH值为3.0时,脱色效果最差。研究人员认为这是因为当废水中存在C1—时,C1—会在活性炭纤维电极上被氧化生成C1O—进而氯氧化溶液中的有机物。此时,溶液的pH值直接影响了C1O—的多少,从而影响活性炭纤维电吸附水处理的效果。

另外,在Huang等人研究了用硝酸和壳聚糖溶液分别改性ACF,然后调控ACF表面使其Zeta电位为0 mV,再测溶液的pH值分别为8.2、2.2。这表明了pH值会影响ACF表面的Zeta电位。

2.3 电压的影响

探索电压对活性炭纤维电吸附过程的影响的研究工作有很多。在处理酸性橙7号(A07)的实验中发现当电压在0.8V后,溶液发生化学反应,此时该过程已不属于单纯的电吸附过程;在0~600 mV的电压范围,电吸附对染料的去除率最高的电压是600 mVo在600 mV电压下,ACF对A07的吸附率和吸附容量分别比不施加电压增加120%和115%。

Conway等人通过在实验过程中改变通入电流的正负性发现电吸附的微观过程:在炭毡电极电吸附过程中,改变通入电压的正负在刚开始的一段时间里会发现解吸附,但是随着时间的延长又会出现再吸附现象。解吸附的原因是通入的反向电压在炭毡电极上中和了最初已存在的电荷,产生对被吸附物质的电荷排斥;而再吸附现象出现的原因是在工作电极带上反向电荷的同时,对电极也带上了相应的反向电荷,这样炭毡电极上就产生了对溶液中相反离子再吸附。

炭纤维范文第5篇

[关键词] 竹纤维;竹浆粕;N-甲基吗啉-N-氧化物

[中图分类号] TS102 [文献标识码] A

竹子应用广泛是大家熟知的,但应用于服装领域还是近几年的事。用竹子加工成的纤维称为竹纤维,竹纤维分成两大类:天然竹纤维和化学竹纤维。

1 竹纤维的分类

1.1 天然竹纤维――竹原纤维

竹原纤维是采用物理、化学相结合的方法制取的天然竹纤维。

1.2 化学竹纤维

化学竹纤维包括竹浆纤维和竹炭纤维。

竹浆纤维:竹浆纤维是一种将竹片做成浆,然后将浆做成浆粕再湿法纺丝制成纤维,其制作加工过程基本与黏胶相似。但在加工过程中竹子的天然特性遭到破坏,纤维的除臭、抗菌、防紫外线功能明显下降。

竹炭纤维:是选用纳米级竹香炭微粉,经过特殊工艺加入黏胶纺丝液中,再经近似常规纺丝工艺纺织出的纤维产品。

竹炭纤维制取过程:竹材炭化(将老竹材加热到450~550 ℃加以炭化,然后进行高温炭化,即在上述低温炭化工程后,再度将该炭化物加热到800~900 ℃,持续处理)竹炭活性化(将经过上述两种加热处理之后的竹炭进行喷雾处理,竹炭急剧冷却消火,此时因水的物理与化学作用,竹炭产生复杂多孔质之结构,表面积增加数倍,大幅地提高吸着能力。经过活性化处理的竹炭,其组织结合密度提高,变得极为坚硬。碳素率可达85%以上)竹炭的粉碎(将前述活性化的竹炭加以粉碎,制成亚纳米级的竹炭粉)均匀分散(将竹炭粉掺入涤纶或黏胶等原浆中并加以搅拌,使其均匀分散在原浆中)纺丝(从原浆中,透过抽丝设备,抽出含竹炭粉的长丝,也可根据需要切成棉型或毛型的短纤、中长纤维等,从而制得竹炭纤维。

2 生产竹纤维的技术

目前关于竹纤维的生产工艺主要有黏胶法制竹纤维和新溶剂法制竹纤维两种。

2.1 黏胶法制竹纤维

工艺流程为:投料浸渍压榨粉碎碱纤维素老成称量黄化纤维素黄酸酯溶解搅拌过滤抽真空黏胶液

浸渍过程中,纤维素结合NaOH,甚至生成醇钠,还发生溶胀,聚合度有所降低。浸渍的碱液浓度为18%~20%,浸渍时间45―60分钟,温度20 ℃左右为益压榨和粉碎是在联合机中进行的,压榨是除去多余的碱液,以利于黄化反应的顺利进行,因为过多的碱液会消耗CS2,还会发生多种副反应.粉碎是为了将压榨后的非常致密的碱纤维素粉碎成细小的松屑状,增大表面积,利于后续中的各步反应能更加均匀的进行。

老成是在老成箱中进行的,这是一个密闭的车间,里面有加热装置,传送带等。老成就是借空气的氧化作用,使碱纤维素分子断链,聚合度降低,黏度下降.老成关键是控制老成的温度和时间,一般采用低温长时间而不用高温,因为温度太高,裂解剧烈,容易使聚合度过低,分子量分布不均匀。

黄化是使碱纤维素与CS2反应,生成纤维素黄酸钠,它能溶于NaOH溶液中,从而形成纺丝液.黄化反应主要是气固相反应,反应过程包括CS2蒸气按扩散机理从碱纤维素表面向内部渗透的过程,以及CS2渗透部分与碱纤维素上的羟基进行反应的过程.黄化反应是可逆反应,主要取决于烧碱和二硫化碳的浓度。

纤维素黄酸酯的溶解过程在带搅拌的溶解釜内进行。块状分散的纤维素黄酸酯在此经连续搅拌和循环研磨,逐步被粉碎成细小颗粒,逐渐溶解。溶解结束后,为了尽量减小各批黏胶间的质量差异,需将溶解终了的数批黏胶进行混合,使黏胶均匀,易于纺丝。

黏胶在放置过程中发生的一系列化学和物理化学变化,称为黏胶的熟成。黏胶的熟成度是指黏胶对凝固作用的稳定程度。一般用黏胶在NH4Cl溶液中的稳定程度表示。熟成度是黏胶的重要指标之一,它直接影响纺丝成形过程的快慢机成品纤维的性能。熟成刚开始,黏度急剧下降,随着熟成的继续进行,黏度又开始上升,甚至形成黏胶胶粒子。

过滤就是除去黏胶溶液中的微粒,防止在纺丝过程中阻塞喷丝孔,造成单丝断头,或在成品纤维结构中形成薄弱环节,是纤维强度下降。通常要经过三道过滤,过滤介质为绒布和细布,采用的是板框式过滤机。

黏胶在溶解搅拌,输送和过滤而带入大量尺寸不一的气泡,加速黏胶的氧化,破坏滤材的毛细结构,纺丝时则易造成断头和毛丝,降低纤维的强度。因此,采用抽真空的方法除去黏胶中的气泡,一般气泡的体积分数控制在0.001%以下。

采用黏胶法生产竹浆纤维是目前主要的生产方式,存在着生产时间较长,生产过程的环保费用较高。

2.2 新溶剂法制竹纤维

新溶剂法纤维素纤维生产工艺属国内首创,自主设计的整套工艺路线和溶解、脱泡、过滤等关键设备具有创新性,拥有完整的自主知识产权。该项目已被列入2009年新增中央投资工业项目、福建省重大科技专项,现已申请8项专利。

该项新技术与国内外同类技术相比具有三大优点。

一是生产工艺流程短且环保。

二是新溶剂为国内首创。

三是生产流程关键设备均自主设计。

生产所用的N-甲基吗啉-N-氧化物水溶液广泛用于有机合成过程中作溶剂等,用于聚酯塑料的发泡催化剂,具有特别优良的性能。

分子式:C5H11NO2

分子量:117.15

含量:60%(wf)(N-甲基吗啉-N-氧化物)

外观:无色透明液体

酸值:(以HCOOH计):≤0.01%

新溶剂法制竹纤维首先按一定比例的新溶剂和竹纤维素浆粕在捏合机内由一对互相配合和旋转的叶片所产生强烈剪切作用迅速反应从而获得均匀的混合搅拌。其次,再出料投入反应釜,根据反应条件对反应釜结构功能及配置附件进行设计,从开始的进料-反应-出料均能够以较高的自动化程度完成预先设定好的反应步骤,对反应过程中的温度、压力、力学控制(搅拌、鼓风等)、反应物/产物浓度等重要参数进行严格的调控。

再者物料经由双螺杆空压机将气体压缩至高压,有利原料的合成及聚合。最后经过凝固浴成丝经由一牵伸二牵伸获得样品。

3 市场发展前景

竹纤维织物的天然抗菌、抑菌、抗紫外线作用在经多次反复洗涤、日晒后,仍能保证其原有的特点,对人体皮肤无任何过敏性不良反应,并对人体皮肤具有保健作用。现已大量应用于口罩、绷带、手术服、护士服等医用防护品和毛巾、袜子、内衣、床上用品等亲肤日用品。

竹纤维的到来,对整个纺织业而言,具有深远的意义。竹纤维的产品价值塑造了消费者的品位与档次,它是一个空白市场,具有巨大的商机。虽然人们忽略了细节,但是对于品质却提高了一个新的台阶。绿色这个概念逐渐映入到消费者的心理,再高档的产品在绿色面前也只能降低档次。因为绿色将是一个长久不衰的流行趋势!竹纤维家纺也将必定成为家纺行业的领军者!随着人类对“生态、健康、环保”理念的不断追求,竹原纤维产业更具有广阔的发展前景。

参考文献:

[1]乐逸蝉,王国和.竹纤维的结构性能及其产品开发[J].四川丝绸,2004(4):10-12.

相关期刊更多

人造纤维

部级期刊 审核时间1个月内

中国纺织工业联合会

中国科学探险

部级期刊 审核时间1个月内

中国科学技术协会

现代经济探讨

CSSCI南大期刊 审核时间1-3个月

江苏省社科院