首页 > 文章中心 > 离散数学

离散数学

离散数学

离散数学范文第1篇

关键词:离散数学 特点 学习方法 定理梳理

离散数学由几个数学分支综合在一起,内容繁多,非常抽象,学习起来非常困难。但由于离散数学在计算机科学中的重要性,计算机专业的学生必须牢牢掌握这门课程。离散数学是理论性较强的学科,学习离散数学的关键是对集合论、数理逻辑和图论有关基本概念的准确掌握,对基本原理及基本运算的运用。

1、离散数学的特点和学习方法

1.1概念和定理多,须准确记忆

离散数学是建立在大量概念之上的逻辑推理学科,概念的理解和掌握是我们学习这门学科的核心。无论那本离散数学的教材,无论哪个教师讲课,都会给出若干定义和定理。掌握、理解和运用这些概念和定理是学好离散数学的关键。

离散数学考试中很多题目是直接考察定义和定理的,这部分题目往往难度较低,本应该较好得分的,大家在复习中却容易忽视。在计算机科学与技术同等学力申硕考试中,经常出现直接考查对知识点识记的题目,对于这类题目,就看考生能否全面、准确的理解和记忆概念和定理,任何的疏忽和模糊,都会造成极为可惜的失分。因此笔者建议,在复习的时候,务必对知识点深刻理解、准确记忆,离散数学的定义和定理主要集中在数理逻辑、集合论和图论三个部分,而数理逻辑又是离散数学的第一个部分,对这部分内容的理解和记忆直接影响后续学习的思维和信心,因此本文主要介绍数理逻辑部分定理的记忆方法。

1.2解题方法性强,须勤加练习

离散数学的特点是抽象思维能力的要求较高,证明题的方法性是很强的。离散数学的证明题多,不同的题型会需要不同的证明方法,如直接证明法、反证法、归纳法、构造最大最小最长等证明法。

如果知道一道题用什么方法,则很容易证出来,否则就会事倍功半。因此在平时的学习中,要勤于思考,对于同一个问题,尽可能多探讨几种证明方法,从而学会熟练运用这些证明方法。离散数学的教材提供了大量课后练习,花费大量时间做完这些习题是不现实的,但是题目类型是有限的,在做练习的过程中注意总结,最重要的是要掌握证明的思路和方法。例如在命题逻辑部分,无非是这么几种题目:将自然语言表述的命题符号化,等价命题的相互转化。在平常学习中,要善于总结和归纳,仔细体会题目类型和此类题目的解题套路。多作练习,即使遇到比较陌生的题也可以较快地领悟其本质,从而轻松解出。

2、学习离散数学的第一步

2.1概念定理梳理的必要性

学习离散数学的重中之重是对概念的理解。没办法理解和掌握这些抽象的定义和定理,就无法进入状态,老觉得听完课好像没听过,不容易进入学习的状态。因此每学完一个部分都应该对这部分内容进行梳理和总结,争取准确、全面、完整地记住并理解所有的定义和定理。只有这样才能适应本课程的特点,并为后续学习打下良好的基础。

2.2数理逻辑的核心推理理论

2.2.1命题逻辑推理定律(12条)+四条重要的推理规则

2.2.3重要推理定律

离散数学范文第2篇

关键词:离散数学;实验教学;实践能力

离散数学课程所涉及的概念、理论和方法,大量地应用在计算机科学体系中,数理逻辑是计算机中的逻辑学、逻辑电路、人工智能的基础课程,集合与关系是数据结构、数据库系统的理论基础,而代数系统则是现实世界的缩影,直接模拟了现实系统,图论知识更是直接应用在计算机网络、数据结构、编译原理等专业课程中。但传统教学中过于注重理论教学而忽略实践,学生普遍认为枯燥难懂,认为是纯粹的数学课程,对计算机编程用处不大。因此教师在授课过程中要注重理论联系实践,培养学生的专业素养,我们将从以下方面循序渐进加强教学理论与实践。

1课程教学注重教学方法与教学实践的改革与创新

加强理论联系实际,从提高计算机编程思想的角度对学生展开教学,教师在讲解理论的同时,要注重其实际应用与算法描述。例如在讲解最短路径时,就要介绍Dijkstra算法,单源最短路径的基本思想如下:设S为最短距离已确定的顶点集(看作红点集),V-S是最短距离尚未确定的顶点集(看作蓝点集)。

①初始化:只有源点s的最短距离是已知的(SD(s)=0),故红点集S={s},蓝点集为空。

②重复以下工作,按路径长度递增次序产生各顶点最短路径:在当前蓝点集中选择一个最短距离最小的蓝点来扩充红点集,以保证算法按路径长度递增的次序产生各顶点的最短路径。当蓝点集中仅剩下最短距离为∞的蓝点,或者所有蓝点已扩充到红点集时,s到所有顶点的最短路径就求出来了。

我们通过实例给学生模拟算法执行过程,验证算法的正确性,但细心的学生会发现前面加进去的点并不一定是后期考察路径的必经点,例如有三个点A,B,C,AB、BC、AC间权值分别为1,2,4,如果设A为源点,则第一次加进来的点是B,到C的最短路径应该是A-B-C,如果BC权值为4,则到C的最短路径应该是A-C,这里就要注意红点集加入的点不是其他点必经点,这是因为集合元素是无序的,不是联结已有的点作为最后点的路径的。

我们给出求解的动画演示过程,加深学生的认识,实际多应用在交通网络中路径的查询中,两地之间是否有路径以及如果有多条路径时找最短路径等,最后再对算法进行扩展解决单目标最短路径问题、单顶点对间最短路径问题等,扩展学生对算法的理解等。

在讲解逻辑推理时,建议学生使用Prolog语言可以轻松实现命题和联结词表示以及逻辑推理,代数系统则是无处不再,自动售货机、电梯系统、自动取款机等都是一个代数系统,有自己的运算关系,鼓励学生定义一些运算,完成一个具有输入输出的可交互的系统。

2建设完善实验课程体系,加强学生实验实践能力

挖掘课程内容,建设完善的实验课程体系,实验课程的主要目的是,培养学生的数学建模能力、算法设计能力、编写程序能力和应用创新能力,使学生养成良好的数学素质。学生可以有选择地做。

(1)基础实验如表1所示,基础实验设计一些离散数学基本问题,要求学生利用所学基础知识,完成相应的算法设计和程序实现。如在集合论部分,设计有限集基本运算算法设计实验,要求学生利用熟悉的程序设计语言完成有限集合的数据结构、集合间的交、并、差、迪卡尔积、子集判断等基本运算。学生可以在每部分中自由选部分题,完成一定的基础实验。这样的设计使得学生学会基本操作,巩固程序设计基本调试方法的掌握。

(2)综合性实验如表2所示,设计一些比较复杂的离散数学问题,要求学生综合运用各章知识或多学科知识,完成问题的分解与求解、综合和整体实现。例数理逻辑部分的命题真值表计算实验中,要求学生设计实现命题数据结构、五种基本逻辑运算的代数运算转换、表达式求值等;学生需要综合运用命题逻辑、数据结构等知识,完成实验各个环节,实现运算结果的显示。可由几个同学组成一个学习小组完成实验。

(3)设计性实验如表3所示。这一层次要求较高,对那些学有余力、兴趣浓厚的学生,给出一些难度较高的课题,要求他们自行设计问题描述模型和实验方案,开发实现小型应用软件。例如,要求学生针对某景区内景点的分布情况,设计可满足旅游者不同需求(如费用最省、线路最短、重复较少、景点最全等各种要求)的实用小软件。教师检查实验现象和实验结果。学生对实际程序的运行结果应能进行分析并提出改进方法,每完成一个实验,都要求写一份实验报告,挑选出好的作品,做成精品演示系统。

3发现实际应用点,扩大学生知识面

让学生了解离散数学在现实生活中的主要应用,有意识地引导学生运用所学理论去分析问题、解决问题,从而让学生充分感受到离散数学这门课程的魅力和实用价值。部分实际应用如表3所示。鼓励学生按照如下流程操作:发现问题,然后构思一个可能求解该问题的算法过程,再设计算法并将其表达为一道可执行程序,最后精确地评价这个程序,考查其作为一种工具去求解其它问题的潜能,锻炼学生数学建模能力,提高分析问题,解决问题的能力。

4建设开放式教学环境,丰富网络教学资源

充分利用网络学堂、课程学习网站等丰富的教学资源,构建了开放式的教学环境,我们开发了离散数学教学网站,模块包括:实验、实验申请、已审核实验、成果展示、精品展示、在线解答(前台如图1所示,后台如图2所示)、资料下载等模块,实验项目可选或自拟,增强了师生间互动,也为学生个性化学习提供了良好的条件。

学生可以在任何时间远程登陆,发表咨询,下载资料,参与实验项目,申请实验项目,获得批准后,我们开放实验室免费提供设备,实验项目结题后提交成果,我们从中提炼出精品,做成精品演示系统,学生还可以对已有成果做深入研究。

总之,鼓励学生吃透书本,挖掘理论的应用领域,鼓励学生改进算法、挖掘应用点,从抽象的理论到实际应用,再扩大应用,抽象到一般情况,让学生感觉到学习离散数学的重要性,理论与实践相结合,互相促进,切实提高大家学习离散数学的兴趣,能够达到学生积极主动为了实现应用而吃透理论,发挥主观能动性。采用项目训练为主的教学理念,切实提高学生的实际动手能力、创新能力和自学能力。

参考文献:

[1]耿素云,屈婉玲.离散数学[M].北京:高等教育出版社.

离散数学范文第3篇

离散数学是近几十年来产生的一门新课程,它是现代数学的一个重要分支,是计算机科学中专业基础理论的核心课程,其整个内容体系都是围绕计算机可以接受和处理的数据对象展开研究,并随着计算机科学的发展而逐步发展、逐步完善和逐步深入。

离散数学是以研究离散量的结构和相互关系为主要目标,主要介绍离散数学的各个分支的基本概念、基本理论和基本方法。其中的综合、分析、归纳、演绎、递推等方法在计算机科学技术中有着广泛的应用;其中的概念、理论以及方法大量地应用在数字电路、编译原理、数据结构、操作系统、数据库系统、算法的分析与设计、人工智能、计算机网络等专业课程中。同时,该课程所提供的训练十分有益于培养学生的概括抽象能力、逻辑思维能力、归纳构造能力,培养学生逐步增强如何实施“科学理论—技术—生产力”转化的观念和方法,提高学生利用数学方法解决问题的技能,提高学生在知识经济时代中的适应能力,也十分有益于学生严谨、完整、规范的科学态度的培养,以及为后续课程如数据结构、操作系统、数据库原理等作必要的准备,为学生的进一步学习奠定计算机数学的基础。

2、教材现状分析

高职院校不管采用的是哪一种教材,都包含了离散数学的基本教学内容如数理逻辑、集合与关系、函数与映射、代数结构与图论,不同的是后两种教材明显地是针对高职层次的学生编写的,它考虑到了使用对象的现有水平及学习特点,对于传统的离散数学的内容在取舍和编排上做了精心的处理,淡化了某些理论性的证明,而注重介绍理论在实际中的应用。比如包含排斥定理,在后两种教材中,它只用了文氏图形象地说明这个定理,并没有做数学上的证明,然后具体讲了这个定理在实际生活中的应用。再如在图论这一章中,前一种教材花了大部分篇幅对欧拉图和哈密顿图存在的条件做了详细的证明,而对它们的应用只做了简单的介绍,而后两种教材具体讲这两种图在实际中的应用。由于高职院校学生的数学基础都比较薄弱,对于一些定理的证明都缺乏基本理论基础,学习起来比较困难,对于后两种教材明显地比较容易接受,所以对于高职学生来说,选择应用型的教材是很必要的。

3、课程特点分析

“离散数学”是一门理论抽象、内容广泛、结构严谨的计算机专业基础课程,它的特点主要表现为概念多、内容散且抽象。比如说“代数结构”这章,就有很多概念如等幂元、幺元、逆元、零元、半群、子半群、独异点、群、循环群、置换群、环、域、格等概念,这些概念之间都有密切的关系,往往一个概念没有掌握好,其它的就更不能掌握。比如说对于(R,+)这个代数系统,如果不知道什么是幺元和逆元,那就不知道怎样判定该代数系统中是否有幺元和逆元,也就不知道它属于哪一种代数系统,所以对于离散数学中的一些基本概念和基本理论要有充分的认识。离散数学的教学内容也是比较散的,主要集中在如下几个方面:数理逻辑、集合与关系、函数与映射、代数结构、图论等,它们彼此之间的独立性很强,每一个内容都可以作为一门课程单独讲授。而在一个学期中讲授离散数学这门课程,就只能讲授各个部分的最基本的知识,所以教学内容给人的感觉是比较散,不集中,并且各个部分之间内容的连贯性不是很强,所以没有较好的抽象思维能力的人,很难往深处学下去。同时,离散数学的题目较为“呆板”,出新题比较困难,不管什么考试,许多题目是陈题,或者稍作变化得来的。

4、学习情况分析

离散数学是建立在大量定义上面的逻辑推理学科,因而对概念的理解是我们学习这门学科的核心。由于离散数学具有“概念多、内容散且抽象”的特点,而这些定义非常抽象,初学者往往不能在脑海中建立起它们与现实世界中客观事物的联系,所以对于学习它的人来说确实是比较困难的事情。经常听到学生反映,一是抓不住知识的内在联系,复习时不知道哪里是重点;二是对书上的例题一看就懂,但自己拿到题以后却不知从何处下手,没有解题思路;三是知道解题的大致思路,但不了解解题的规范与要求,不会表达,一写出来常常是漏洞百出。对于学生普遍反映的这几个问题,我觉得主要原因是对基本概念和基本理论没有较好地把握的基础上缺乏做题的经验。要学好“离散数学”这门课程,首先要对基本概念和基本理论有较好地掌握,它不仅需要深入地思考,反复领会,更需要做大量的习题。在解题过程中,一方面可以提高自己的解题技巧,另一方面也是更重要的方面,是深化对基本概念和基本理论的认识。因为有些习题往往是基本概念和基本理论的一种具体描述,而有些习题则是基本概念和基本理论的一种实际应用,所以解题过程就是进一步领悟的过程,深入理解的过程,因此做大量习题是学好该课程的关键之一。现在很多学生认为自己是大学生了,不再像高中那样搞“题海战术”,况且现在的很多课程都没有布置作业,所以他们对老师布置作业怨声载道,常常采取抵抗、抄袭等消极手段来对待,这对于自己是百害而无益的。

5、复习建议

为了更好地学习离散数学这门课程,在临近考试阶段,怎样复习它是很多学生头疼的问题,现就复习谈谈我个人的建议。在复习这门课程的时候,我个人认为应该这个过程大致分为二个阶段:

第一阶段是知识储备阶段。第一遍复习,我们提出一个最为重要的要求,即准确、全面、完整地记忆所有的定义和定理。具体做法可以是:在进行完一章的学习后,用专门的时间对该章包括的定义与定理实施强记,直到能够全部正确地默写出来为止。无须强求一定要理解,记住并能准确复述各定义定理是此阶段的最高要求。也不需做太多的题,但要把例题都看懂,重心要放在对定义和定理的记忆上。对于这一阶段,如果平时注意积累,应该是花不了多长时间的。

第二阶段,深入学习,并大量做课后习题的阶段。一般来说,若能熟练解出某一章75%以上的课后习题,可以考虑结束该章。解离散数学的题,方法非常重要,如果拿到一道题,立即能够看出它所属的类型及关联的知识点,就不难选用正确的方法将其解决,反之则事倍功半。例如在命题逻辑部分,无非是这么几种题目:将自然语言表述的命题符号化,等价命题的相互转化(包括化为主合取范式与主析取范式),以给出的若干命题为前提进行推理和证明。相应的对策也马上就可以提出来。以推理题为例,主要是利用P、T规则,加上蕴涵和等价公式表,由给定的前提出发进行推演,或根据题目特点采用真值表法、CP规则和反证法。由此可见,在平常学习中,要善于总结和归纳,仔细体会题目类型和此类题目的解题思路。如此多作练习,则即使遇到比较陌生的题也可以较快地领悟其本质,从而轻松解出。

离散数学范文第4篇

Abstract: Discrete mathematics is not only curriculum with wide range,but also an important basic course in computer science and technology profession,especiall in recent decades,due to the rapid development and wide range of computer applications,a large number of mathematics related to the actual problems often need firstly convert the problem of discrete mathematics. This paper discussed discrete mathematics and computer science courses and made its own assessment on related issues.

关键词:离散数学;离散建模;课程改革

Key words: discrete mathematics;dispersion modeling;curriculum reform

中图分类号:TP3-05文献标识码:A文章编号:1006-4311(2010)10-0204-02

0引言

离散数学课程自上世纪70年代出现以来一直是计算机专业的核心课程之一,离散数学课程的教学目的,不但作为计算机科学与技术及相关专业的理论基础及核心主干课,对后续课程提供必需的理论支持。计算机专业中这样重要的课程竟会出现这样奇怪的现象,不禁使人疑惑:离散数学到底出了什么问题?

更重要的是旨在“通过加强数学推理,组合分析,离散结构,算法构思与设计,构建模型等方面专门与反复的研究、训练及应用,培养提高学生的数学思维能力和对实际问题的求解能力。”

由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系, 因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理

1课程的目标定位

在长达三十余年的课程发展历史中,离散数学在计算机专业,特别是应用型计算机专业中的目标定位,要改变离散数学目前的局面首先需从明确目标定位做起。

1.1 一般认为,应用型本科计算机专业目标定位有掌握离散数学的基本理论与方法,同时培养抽象的离散思维能力与逻辑思维能力。为诸多后续课程提供支持。用于计算机领域的离散建模。大多数人怀疑用于计算机领域的离散建模。作为计算机学科工具,离散建模是离散数学区别高等数学的根本之处,是使离散数学成为计算机专业核心课程的原因之一,也是离散数学与计算机紧密关联之处由此可看,明确这个目标定位是离散数学课程改革的当务之急。

1.2 离散数学是计算机科学与技术应用与研究的有力工具计算机专业人员通过离散数学逻辑思维能力与抽象思维能力的培养,在这些能力的作用下使他们的应用、研究能力有所提高。这种说法虽有一定道理,但远不止如此。离散数学成为计算机专业的核心课程,主要原因就是由于它与计算机学科直接的、紧密的关联,特别是它作为研究与应用计算机学科的工具,历史的发展可以证明这一点。

在计算机的发展历史中,离散数学起着至关重要的作用,在计算机产生前,图灵机理论对冯 #8226;诺依曼计算机的出现起到了理论先导作用;布尔代数作为工具对数字逻辑电路起到指导作用;自动机理论对编译系统开发的理论意义、谓词逻辑理论对程序正确性的证明以及软件自动化理论的产生都起到了奠基性的作用。此外,应用代数系统所开发的编码理论已广泛应用于数据通讯及计算机中,而应用关系代数对关系数据库的出现与发展起到了至关重要的作用。近年来,离散数学在人工智能、专家系统及信息安全中均起到了直接的、指导性的作用。以上充分证明,离散数学在计算机科学与技术的研究与开发中作为一种强有力的工具,起着重要作用。

1.3 离散建模是离散数学应用于计算机学科的有效手段离散数学在计算机科学中占有相当重要的地位。因此我们要较好的把握离散数学学习。离散数学与计算机学科发生关系,主要通过离散建模实现了从离散数学到计算机领域的应用。

首先,对计算机(或客观世界)中的某领域建立起一个抽象的形式化(离散)数学模型,称离散模型,而建立模型过程称离散建模。该领域的研究归结为对离散模型的研究。其次,用离散数学的方法对离散模型求解,由于离散模型具有强大的离散数学理论支撑,因此对它的求解比对领域的求解更为有效。最后,可将离散模型的形式化解语义化为某领域的具体结果。

这样,我们可以将对某领域的研究通过建立离散模型而归结为对离散模型的研究,最后可将其研究数学结果返回为领域中的语义结果从而最终实现问题求解的目的。

有关的研究例子有很多,如在数据库研究中建立的关系代数模型、在编译系统中建立的自动化模型、在数字逻辑电路中建立的布尔代数模型以及在数据通讯中建立的纠错码模型等。

下面以关系代数模型为例说明离散数学对计算机科学技术发展的作用。对数据库领域的研究始于上世纪60年代,最初采用的是图论模型从而形成了当时有名的层次数据库与网状数据库,它们对构作数据静态结构起着重要作用。在数据的动态结构要求与数据操作要求越加重要形势下,IBM公司F.F.Codd于1970年提出了数据库的关系代数模型。该模型用离散数学中的关系表示数据库中数据结构,用代数系统中的代数运算表示数据库中的动态结构与数据操作要求。这个离散模型较为真实地反映了数据库发展的需求,因而成为当时数据库中最为流行的模型,它称为关系模型。

2数学建模与计算机的关系

随着计算机的出现和广泛应用,计算机软硬件技术的迅速发展 ,数学的应用已从物理领域深入到经济、生态、环境、医学、人口和社会等更为复杂的非物理领域。今天,许多基础学科已从定性描绘走向定量分析,边缘学科不断涌现;数学在金融、经济、工程技术以及自然科学中具有广泛的应用,它的重要性已逐渐成为人们的共识。利用数学方法解决实际问题时,要求从实际错综复杂的关系中找出其内在规律,然后用数字、图表、符号和公式把它表示出来,再经过数学与计算机的处理,得出供人们进行分析、决策、预报或者控制的定量结果。数学建模过程需要经过模型假设、模型建立、模型求解、模型分析与检验、模型应用等几个步骤,在这些步骤中都伴随着计算机的使用。

计算机的产生正是数学建模的产物,20纪40年代,美国为了研究弹道导弹飞行轨迹的问题,迫切需要一种计算工具来代替人工计算,计算机在这样的背景下应运而生。计算机的产生与发展又极大地推动了数学建模活动,计算机高速的运算能力,非常适合数学建模过程中的数值计算;它的大容量贮存能力以及网络通讯功能,使得数学建模过程中资料存贮、检索变得方便有效;它的多媒体化,使得数学建模中一些问题能在计算机上进行更为逼真的模拟实验;它的智能化,能随时提醒、帮助我们进行数学模型求解。此外,如Mathlab、Maple、SAS、SPSS等一批优秀数学软件的出现更使数学建模如虎添翼。再者,数学建模与生活实际密切相关,所采集到的数据量多,而且比较复杂,比如DVD在线租赁,长江水质的评价和预测,银行贷款和分期付款等,往往计算量大,需要借助于计算机才能快捷、简便地完成。数学建模竞赛与以往所说的那种数学竞赛(纯数学竞赛)不同,它要用到计算机,甚至离不开计算机,但却又不是纯粹的计算机竞赛,它涉及到物理、化学、生物、医学、电子、农业、军事、管理等各学科、各领域,但又不受任何一个具体的学科、领域的限制。数学建模过程需要经过模型假设、模型建立、模型求解、模型分析与检验、模型应用等几个步骤,在这些步骤中都伴随着计算机的使用。例如,模型求解时,需要上机计算、编制软件、绘制图形等,数学建模竞赛中打印机随时可能使用,同时,数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展做出杰出贡献的科学家都出身于数学专业,显而易见,比赛中的一个重要环节是使用计算机来解决问题,这对使用计算机的能力的提高是很明显的。

数学模型是描述实际问题数量规律的、由数学符号组成的、抽象的、简化的数学命题、数字公式、图表或算法。当我们使用数学方法解决实际问题时,首先要把实际事物之间的联系抽象为数学形式,这就是数学建模。在数学教学中,利用数学建模,可提高学生的运算能力、分析推理能力,进而提高解决问题和探究问题的能力。

数学建模的目的是构建数学建模意识,培养学生创造性思维能力,在诸多的思维活动中,创新思维是最高层次的思维活动,是开拓性、创造性人才所必须具备的能力,培养创造性思维能力,主要应培养学生灵活运用基本理论解决实际问题的能力,在数学教学中培养学生的建模意识实质上是培养、发展学生的创造性思维能力,因为建模活动本身就是一项创造性的思维活动,它既具有一定的理论性,又具有较强的实践性,还要求思维的深刻性和灵活性,而且在建模活动过程中,能培养学生独立、自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,可以培养学生的想象能力、直觉思维、猜测、转换、构造等能力,而这些数学能力正是创造性思维所具有的最基本的特征,在培养创新思维过程中要求必须具有一定的计算机基础,只有具有一定的计算机知识才能更好的处理数据,发现事物之间的内在的联系,才能更好的进行知识的转换,才能更好的构造出最优的模型。总之,具有必备的计算机知识是培养建模意识的关键,是培养数模创新能力的前提。计算机也为数学建模竞赛活动提供了有力的工具。

离散数学范文第5篇

关键词:离散数学;计算机科学;人工智能

中图分类号:O158 文献标识码:A 文章编号:

离散数学是计算机科学的基础理论,也是现代数学的一大分支。离散数学将离散性的结构和相互间的关系作为主要研究对象,目前计算机学科的多个方面都已经提出并使用了离散数学理论。数学为计算机的优化和程序编写起到了积极作用。如人工智能技术、信号处理以及数字电视等媒体技术。

1离散数学应用于计算机数据结构

计算机具体问题的解决依赖于数据机构的建立。从数学角度,就是通过建立严格数字模型,然后解开此模型的过程。是通过数学知识和计算机程序编写的过程,而数学模型的构建就是数据结构研究的内容。寻求数学模型的过程就会提出操作对象,分析操作对象的过程,找到数学语言与计算机语言之间的契合点是研究的起点。一般情况下,数据结构主要分为树形结构、线性结构、图状结构、网状结构四种。数据结构可用于企业结构员工工资的发放问题,还可以解决一系列的距离问题,其具有广泛的应用。

2离散数学应用于计算机数据库

数据库技术已经成为社会认可并广泛应用的计算机技术,笛卡儿积是离散数学中的一个重要理论,它在计算机数据库的建立中起到了明显的作用。代数理论是关系数据模型建立的理论基础,在这一基础上建立了由行和列共同组成的二维表,我们称之为二元关系理论,这一理论主要可应用于表结构设计、域和域间关系、关系操作数据查询与维护功能等。

3离散数学应用于人工智能

离散数学中的逻辑推理是人工智能研究的基础理论之一,谓词逻辑语言的使用使我们了解了推理的子命题。逻辑规则将数学进行了更准确的定义,人工智能研究最初,就应用了离散数学理论的数学推理和,尤其是布尔代数。因此,在人工数学定理证明是人工智能所采用的理论,在现实设计中有很广泛的应用,如推理机的设计与应用。推理机以逻辑推理和产生式推理为主,推理机主要以数据库中的知识解决问题,是专家思想的一种体现。因此我们也可以将人工智能视为一种专家系统,是应用离散数学理论应用于数学问题分析、解决问题的方法。

4离散数学应用于计算机体系结构

离散数学主要应用于计算机体系结构设计中的指令吸引设计及其内容改进,对计算机整体性能的发挥具有良好的作用。指令系统优化方法以指令格式化为主。其主要作用是它能够以操作码与地址码共同实现以最短的位数来操作地址信息和操作信息。目前,主要应用哈夫曼的压缩概念来解决这一问题。这种方法是数学方法之一,是一种无损压缩法。哈夫曼的压缩概念主要是应用了数学中概率不均等原理,将最大概率事件以最短的位数来处理。相反,发生概率最低的事件则以最长的位数来处理,这样平均位数得以缩短。其基本原理是使用哈夫曼算法构造出哈夫曼树。利用哈夫曼树来对系统指令中的使用数据频度进行统计,将其以从小到大的顺序进行排列,将两个最小频度合并成一个大的频度并形成新的结合点,按照同样的原理降低进行从小到大的排列,按该频度大小插入其他未参与结合的频度值中指导所有频度完成结合。将节点能够向下延伸的分支分别标注“1”或“0”,沿着根结点开,沿线到达各频度结点所经过的代码序列就构成了所谓的哈夫曼编码。所得到的编码系列与指令使用概率低的指令编以长码相符合,即指令使用概率高的指令编以短码的目的。

5离散数学在计算机中的应用发展趋势

基于计算机中的离散数学理论应用逐渐广泛,数学理论应用于计算机也逐渐完善。当然,除了上文中提到的离散数学的基础作用外,它还在计算机的其他方面具有重要作用,具有发展前途。未来,计算机硬件的性能将进一步提高,而设计者的离散数学知识则是这一技术发展的基础,数学逻辑的应用将为计算机的软件设计提供理论基础。另外,数学中的关联词概念可用于计算机高低电平的信号运算通二进制数据之间的运算,这就是数学在电路设计中的作用,应用数学理论,设计过程更加清晰化、直观化。数学集合论概念主要应用于数据结构和算法分析,这一理论主要应用于软件工程及计算机数据库的设计,确保了计算机数据库的更新速度。代数结构作为数学的基本理论,对计算机甚至对多个领域具有重要作用,计算机程序设计时,要区分其可计算性和不可计算性,在这一前提下,形式语言与自动机、网络与通信理论、密码学、程序理论或形式语义学都成为数学对计算机的指导项目。最后,代数中的格与布尔理论为计算机硬件的设计以及网络通讯系统的设计提供了基础,这一数学理论应用计算机制度、计算机操作系统以及C语言程序进行编译、研究和检索,在多个领域如树的结构对于集成电路的布线、电子信息网流量上都能够具有一定的发展。人工智能也将成为未来离散数学理论应用于计算机更新、设计和发展中的重要理论。

6总结

总之,离散数学理论在计算机人工智能,数据库建立中都具有指导意义。计算机在科技领域、工业领域以及人们的生活中的应用以及普及,离散数学是以离散性的结构和相互间的关系作为主要研究对象,其在计算机中的应用帮助减少计算机漏洞并提高计算机运行效率。离散数学是计算机技术的基础,缺乏对离散数学的了解,计算机更新和发展无从谈起。无论是信息处理还是理论对于计算机科学,都有着密切的关系,因此如何离散数学理论应用于计算机发展中是本文研究的重点。

参考文献:

[1]朱家义,苗国义等.基于知识关系的离散数学教学内容设计[J].计算机教育,2010(18).

[2]王丽.浅析离散数学在计算机科学中的应用[J].数学学习与研究,2011(09).

相关期刊更多

三晋基层治理

省级期刊 审核时间1个月内

中共山西省委党校(山西行政学院)

青岛大学学报

省级期刊 审核时间1个月内

山东省教育厅

运筹学学报

北大期刊 审核时间1-3个月

中国科学技术协会