首页 > 文章中心 > 生物医学工程

生物医学工程范文精选

生物医学工程

生物医学工程范文第1篇

显微镜的发明“解剖”一词由希腊语“Anatomia”转译而来,其意思是用刀剖割,肉眼观察研究人体结构。17世纪LeeWenhock发明了光学显微镜,推动了解剖学向微观层次发展,使人们不但可以了解人体大体解剖的变化,而且可以进一步观察研究其细胞形态结构的变化。随着光学显微镜的出现,医学领域相继诞生了细胞学、组织学、细胞病理学,从而将医学研究提高到细胞形态学水平。

普通光学显微镜的分辨能力只能达到微米(μm)级水平,难以分辨病毒及细胞的超微细结构、核结构、DNA等大分子结构。而20世纪60年代出现的电子显微镜,使人们能观察到纳米(nm)级的微小个体,研究细胞的超微结构。光学显微镜和电子显微镜的发明都是医学工程研究的成果,它们对推动医学的发展起了重要作用。

影像学诊断飞跃进步影像学诊断是20世纪医学诊断最重要发展最快的领域之一。50年代X光透视和摄片是临床最常用的影像学诊断方法,而今天由于X线CT技术的出现和应用,使影像学诊断水平发生了飞跃,从而极大地提高了临床诊断水平。即计算机体断层摄影(computedtomographyCT),即是利用计算机技术处理人体组织器官的切面显像。X线CT片提供给医生的信息量,远远大于普通X线照片观察所得的信息。目前,螺旋CT(spiralCT或helicaletCT)已经问世,能快速扫描和重建图像,在临床应用中取代了多数传统的CT,提高了诊断准确率[1]。医学工程研究利用生物组织中氢、磷等原子的核磁共振(nuclearmagneticresonance)原理。研制成功了核磁共振计算机断层成像系统(MRI),它不仅可分辨病理解剖结构形态的变化,还能做到早期识别组织生化功能变化的信息,显示某些疾病在早期价段的改变,有利于临床早期诊断。可以认为MRI工程的进步,促进了医学诊断学向功能与形态相结合的方向发展,向超快速成像、准实时动态MRI、MRA、FMRI、MRS发展。根据核医学示踪,利用正电子发射核素(18F,11C,13N)的原理,创造的正电子发射体层摄影(PET),是目前最先进的影像诊断技术。美国新闻媒体把PET列为十大医学生物技术的榜首。PET问世不过30年历史,但它已显示出对肿瘤学、心脏病学、神经病学、器官移植,新药开发等研究领域的重要价值[2]。影像学诊断水平的不断提高,与20世纪生物医学工程技术的发展密切相关。

介入医学问世介入医学是一种微创伤的诊疗技术。Dotter和Judkin(1964年)是最早使用介入技术治疗疾病的创始人,他们用导管对下肢动脉阻塞性病变进行扩张治疗取得成功。1967年Margulis首先使用过介入放射学(InterventionalRadiology),这是医学文献出现“介入”一词的最早记载。1977年Gruenzing成功地进行了首例冠状动脉球囊扩张术获得成功以后,介入性诊疗技术由于其创伤小、患者痛苦少,安全有效而倍受临床欢迎。20世纪80年代随着生物医学工程的发展,高精度计算机化影像诊查仪器、数字减影血管造影(DSA)、射频消融技术以及高分子(high-polymer)新材料制成的介入技术用的各种导管相继问世,使介入性诊疗技术发生了飞速进步,临床应用范围不断扩大,从心血管、脑血管、非血管管腔器官到某些恶性肿瘤等都具有使用介入诊疗的适应证,并使诊疗效果明显提高,患者可减免许多大手术之苦。有人把介入诊疗技术视为与药物诊疗、手术诊疗并列的临床三大诊疗技术之一,也有人把介入诊疗技术称之为20世纪发展起来的临床医学新领域--介入医学[3,4]。

人工器官的应用当人体器官因病伤已不能用常规方法救治时,现代临床医疗技术有可能使用一种人工制造的装置来替代病损器官或补偿其生理功能,人们称这种装置为人工器官(artificialorgan)。如20世纪50年代以前,风湿性心脏瓣膜病的治疗,除了应用抗风湿药物、强心药物对症治疗外,对病损的瓣膜很难修复改善,不少患者因心功能衰竭死亡。而今天可以应用人工心肺机体外循环技术,在心脏停跳状态下切开心脏,进行更换人工瓣膜或进行房、室间隔缺损的修补,使心脏瓣膜病、先天性心脏病患者恢复健康。心外科之所以能达到今天这样的水平,主要是由于人工心肺机的问世和使用了人工心脏瓣膜、人工血管等新材料、新技术的结果[5]。

肾功能衰竭、尿毒症患者愈后不良,而人工肾血液透析技术已挽救了大量肾病晚期患者的生命,肾病治疗学也因此有了很大进步。

现代生物医学工程中人工器官的发展也非常迅速,除上述人工器官外,人工关节、人工心脏起搏器、人工心脏、人工肝、人工肺等在临床都得到应用,使千千万万的患者恢复了健康。可以说,人体各种器官除大脑不能用人工器官代替外,其余各器官都存在用人工器官替代的可能性。

此外,放射医学、超声医学、激光医学、核医学、医用电子技术、计算机远程医疗技术等先进的医疗技术和仪器设备都是现代医学工程研究开发的成果,综上可见,20世纪生物医学工程的发展,显著提高了医学诊断和治疗水平,有力地推动着医学科学的进步。

21世纪生物医学工程展望纵观医学新技术诞生和发展的历史,从伦琴发现X线到今天X射线诊疗技术的发展,从朗兹万发现超声波到今天B超诊断的广泛应用,从布洛赫和伯塞尔发现核磁共振到今天MRI的问世,从赫斯费尔德发明CT到今天CT成像系统的应用,都是以物理学工程技术为基础、医学需求为前提发展起来的医学新技术。循着20世纪医学发展的轨迹,我们有理由预测21世纪新的医学诊疗技术可能在以下10个方面有重大突破和创新:

(1)各种诊疗仪器、实验装置趋向计算机化、智能化,远程医疗信息网络化,诊疗用机器人将被广泛应用。[6]

(2)介入性微创,无创诊疗技术在临床医疗中占有越来越重要的地位。激光技术,纳米技术和植入型超微机器人将在医疗各领域里发挥重要作用。

(3)医疗实践发现单一形态影像诊查仪器不能满足疾病早期诊断的需要。随着PET的问世和应用,形态和功能相结合的新型检测系统将有大发展。非影像增显剂型心血管、脑血管影像诊查系统将在21世纪问世。

(4)生物材料和组织工程将有较大发展,生物机械结合型、生物型人工器官将有新突破,人工器官将在临床医疗中广泛应用。

(5)材料和药物相结合的新型给药技术和装置将有很大发展,植入型药物长效缓释材料,药物贴覆透入材料,促上皮、组织生长可降解材料,可逆抗生育绝育材料、生物止血材料将有新突破。

(6)未来医疗将由治疗型为主向预防保健型医疗模式转变。为此,用于社区、家庭、个人医疗保健诊疗仪器,康复保健装置,以及微型健康自我监测医疗器械和用品将有广泛需求和应用。

(7)除继续努力加强生物源性疾病防治外,对精神、心理、社会源性疾病的防治诊疗技术和相应仪器设备的研制受到越来越多的重视与开发,研制精神分析、心理安抚、生物反馈型诊疗技术和设备将是生物医学工程的新起点。

(8)创伤是造成青年人群死亡的主要原因,研制新型创伤防护装置、生命急救系统是未来生物医学工程的重要课题。

(9)即将迎来的21世纪是分子生物学时代,有关分子生物学的诊疗新技术将快速发展,遗传、疾病基因诊疗技术,生物技术和微电子技术相结合的DNA芯片、雪白芯片和诊疗系统将被广泛应用。

生物医学工程范文第2篇

科交叉的边缘科学,它是用现代科学技术的理论和方法,研究新材料、新技术、新

仪器设备,用于防病、治病、保护人民健康,提高医学水平的一门新兴学科。

生物医学工程在国际上做为一个学科出现,始于20世纪50年代,特别是随着宇

航技术的进步、人类实现了登月计划以来,生物医学工程有了快速的发展。在我

国,生物医学工程做为一个专门学科起步于20世纪70年代,中国医学科学院、中

国协和医科大学原院校长、我国著名的医学家黄家驷院士是我国生物医学工程学

科最早的倡导者。1977年中国协和医科大学生物医学工程专业的创建、1980年中

国生物医学工程学会的成立,有力地推进了我国生物医学工程的发展。目前,我

国许多高校科研单位均设有生物医学工程机构,从事着生物医学的科研教学工作

,在我国生物医学工程科学事业的发展中发挥着重要作用。

显微镜的发明“解剖”一词由希腊语“Anatomia”转译而来,其意思是用

刀剖割,肉眼观察研究人体结构。17世纪LeeWenhock发明了光学显微

镜,推动了

解剖学向微观层次发展,使人们不但可以了解人体大体解剖的变化,而且可以进

一步观察研究其细胞形态结构的变化。随着光学显微镜的出现,医学领域相继诞

生了细胞学、组织学、细胞病理学,从而将医学研究提高到细胞形态学水平。

普通光学显微镜的分辨能力只能达到微米(μm)级水平,难以分辨病毒及细胞

的超微细结构、核结构、DNA等大分子结构。而20世纪60年代出现的电子显微镜,

使人们能观察到纳米(nm)级的微小个体,研究细胞的超微结构。光学显微镜和电

子显微镜的发明都是医学工程研究的成果,它们对推动医学的发展起了重要作用

影像学诊断飞跃进步影像学诊断是20世纪医学诊断最重要发展最快的领域

之一。50年代X光****和摄片是临床最常用的影像学诊断方法,而今天由于X线CT技

术的出现和应用,使影像学诊断水平发生了飞跃,从而极大地提高了临床诊断水

平。即计算机体断层摄影(computedtomographyCT),即是利用计算机技术处理人

体组织器官的切面显像。X线CT片提供给医生的信息量,远远大于普通X线照片观

察所得的信息。目前,螺旋CT(spiralCT或helicaletCT)已经问世,能快速扫描

和重建图像,在临床应用中取代了多数传统的CT,提高了诊断准确率[1]。医学

工程研究利用生物组织中氢、磷等原子的核磁共振(nuclearmagneticresonanc

e)原理。研制成功了核磁共振计算机断层成像系统(MRI),它不仅可分辨病理解剖

结构形态的变化,还能做到早期识别组织生化功能变化的信息,显示某些疾病在

早期价段的改变,有利于临床早期诊断。可以认为MRI工程的进步,促进了医学诊

断学向功能与形态相结合的方向发展,向超快速成像、准实时动态M

RI、MRS发展。根据核医学示踪,利用正电子发射核素(18F,11C,13N)的原理,

创造的正电子发射体层摄影(PET),是目前最先进的影像诊断技术。美国新闻媒体

把PET列为十大医学生物技术的榜首。PET问世不过30年历史,但它已显示出对肿

瘤学、心脏病学、神经病学、器官移植,新药开发等研究领域的重要价值[2]。

影像学诊断水平的不断提高,与20世纪生物医学

工程技术的发展密切相关。

介入医学问世介入医学是一种微创伤的诊疗技术。Dotter和Judkin(1964年

)是最早使用介入技术治疗疾病的创始人,他们用导管对下肢动脉阻塞性病变进行

扩张治疗取得成功。1967年Margulis首先使用过介入放射学(InterventionalRa

diology),这是医学文献出现“介入”一词的最早记载。1977年Gruenzing成功

地进行了首例冠状动脉球囊扩张术获得成功以后,介入性诊疗技术由于其创伤小

、患者痛苦少,安全有效而倍受临床欢迎。20世纪80年代随着生物医学工程的发

展,高精度计算机化影像诊查仪器、数字减影血管造影(DSA)、射频消融技术以及

高分子(high-polymer)新材料制成的介入技术用的各种导管相继问世,使介入性

诊疗技术发生了飞速进步,临床应用范围不断扩大,从心血管、脑血管、非血管

管腔器官到某些恶性肿瘤等都具有使用介入诊疗的适应证,并使诊疗效果明显提高

,患者可减免许多大手术之苦。有人把介入诊疗技术视为与药物诊疗、手术诊疗

并列的临床三大诊疗技术之一,也有人把介入诊疗技术称之为20世纪发展起来的

临床医学新领域--介入医学[3,4]。

人工器官的应用当人体器官因病伤已不能用常规方法救治时,现代临床医

疗技术有可能使用一种人工制造的装置来替代病损器官或补偿其生理功能,人们

称这种装置为人工器官(artificialorgan)。如20世纪50年代以前,风湿性心脏

瓣膜病的治疗,除了应用抗风湿药物、强心药物对症治疗外,对病损的瓣膜很难

修复改善,不少患者因心功能衰竭死亡。而今天可以应用人工心肺机体外循环技

术,在心脏停跳状态下切开心脏,进行更换人工瓣膜或进行房、室间隔缺损的修

补,使心脏瓣膜病、先天性心脏病患者恢复健康。心外科之所以能达到今天这样

的水平,主要是由于人工心肺机的问世和使用了人工心脏瓣膜、人工血管等新材

料、新技术的结果[5]。

肾功能衰竭、尿毒症患者愈后不良,而人工肾血液透析技术已挽救了大量肾病

晚期患者的生命,肾病治疗学也因此有了很大进步。

现代生物医学工程中人工器官的发展也非常迅速,除上述人工器官外,人工关

节、人工心脏起搏器、人工心脏、人工肝、人工肺等在临床都得到应用,使千千

万万的患者恢复了健康。可以说,人体各种器官除大脑不能用人工器官代替外,

其余各器官都存在用人工器官替代的可能性。

此外,放射医学、超声医学、激光

医学、核医学、医用电子技术、计算机远程

医疗技术等先进的医疗技术和仪器设备都是现代医学工程研究开发的成果,综上

可见,20世纪生物医学工程的发展,显著提高了医学诊断和治疗水平,有力地推

动着医学科学的进步。

21世纪生物医学工程展望纵观医学新技术诞生和发展的历史,从伦琴发现

X线到今天X射线诊疗技术的发展,从朗兹万发现超声波到今天B超诊断的广泛应用

,从布洛赫和伯塞尔发现核磁共振到今天MRI的问世,从赫斯费尔德发明CT到今天

CT成像系统的应用,都是以物理学工程技术为基础、医学需求为前提发展起来的

医学新技术。循着20世纪医学发展的轨迹,我们有理由预测21世纪新的医学诊疗

技术可能在以下10个方面有重大突破和创新:

(1)各种诊疗仪器、实验装置趋向计算机化、智能化,远程医疗信息网络化,

诊疗用机器人将被广泛应用。[6]

(2)介入性微创,无

创诊疗技术在临床医疗中占有越来越重要的地位。激光技

术,纳米技术和植入型超微机器人将在医疗各领域里发挥重要作用。

(3)医疗实践发现单一形态影像诊查仪器不能满足疾病早期诊断的需要。随着

PET的问世和应用,形态和功能相结合的新型检测系统将有大发展。非影像增显剂

型心血管、脑血管影像诊查系统将在21世纪问世。

(4)生物材料和组织工程将有较大发展,生物机械结合型、生物型人工器官将

有新突破,人工器官将在临床医疗中广泛应用。

(5)材料和药物相结合的新型给药技术和装置将有很大发展,植入型药物长效

缓释材料,药物贴覆透入材料,促上皮、组织生长可降解材料,可逆抗生育绝育

材料、生物止血材料将有新突破。

(6)未来医疗将由治疗型为主向预防保健型医疗模式转变。为此,用于社区、

家庭、个人医疗保健诊疗仪器,康复保健装置,以及微型健康自我监测医疗器械

和用品将有广泛需求和应用。

(7)除继续努力加强生

物源性疾病防治外,对精神、心理、社会源性疾病的防

治诊疗技术和相应仪器设备的研制受到越来越多的重视与开发,研制精神分析、

心理安抚、生物反馈型诊疗技术和设备将是生物医学工程的新起点。

(8)创伤是造成青年人群死亡的主要原因,研制新型创伤防护装置、生命急救

系统是未来生物医学工程的重要课题。论文帮

(9)即将迎来的21世纪是分子生物学时代,有关分子生物学的诊疗新技术将快

速发展,遗传、疾病基因诊疗技术,生物技术和微电子技术相结合的DNA芯片、雪

白芯片和诊疗系统将被广泛应用。

(10)空气污染、环境污染严重危害着人类健康,研究和开发劳动保护、家庭保

健、个人防护用的人工气候微环境是未来不能忽视的问题。

1997年我国了关于卫生工作改革与发展的决定,提出了奋斗目标:“到2

000年,基本实现人人享有初级卫生保健”,到2010年国民健康的主要指标在经济

发达地区达到或接近世界中等发达国家水平,在欠发达地区达到发展中国家的先

进水平。1999年国家科技部召开了“发展生物医学工程技术战略研讨会”,国家

工程院开展了有关发展我国医疗器械工业战略研究等,对推动生物医学工程产业

发展、落实创新工程战略布置起着重要作用。20世纪人类与疾病做斗争,在医学

诊疗技术上取得了重大成就;但面向21世纪的巨大挑战,我们要动员起来,调整

政策,制定规划,改革医学研究教学的旧模式,发挥现代科学多学科交叉合作的优

势,创建全新的生物医学,为人民造福。

参考文献

[1]GeWangMichealWV.PreliminarystudyonhelicalCTalgorithmsfor

patientmotionestimationandcompensation.IEEETran

[2]MinnH,LapelaM,KlemiPJetal.Predicationofsurvivalwithfl

uorin-18-fluorodeoxyglucoseandPETinheadandneckcaner.JNuclMe

d,1997,38:1907

[3]ScheinmanMM.CatheterAblation.Circulation,1991,83:1489-1498

[4]杨于彬,生物医学工程介入性诊疗技术,世界医疗器械,1997,3(9):5

0-52

[5]KatirciogluF,YamakB

,BattaloglaB,etal.Longtermresultsof

mitralvalvereplacementwithpreservationoftheposteriorleaflet.J

HeartValveDis,1996,5(3):302

生物医学工程范文第3篇

参观实习报告

参观时间:200*年2月18日

参观地点:*****市中山医院

带队老师:**

2月18日,星期三,天气晴好。

下午1点15分,我们生物医学工程2000级全体同学,共30名,在学校大门集合完毕。1点30分,我们在王平老师的带领下乘车前往本次实习的地点,重庆市中山医院。

在路途中,王平老师为我们讲解了本次实习的目的及重点,并且提出了一些参观实习中需要注意的纪律和要求。

我们生物医学工程专业所学习的重点在于各种医疗仪器,医疗器械和设备,本次实习就是为了让我们能够对于我们所学过的各种仪器设备有一个感性的直观的认识,从而把书本上的理论和现实中的技术联系与结合起来。中山医院位于重庆市渝中区的中山路上,这家医院占地面积并不很大,但是它拥有的设备和仪器却在重庆乃至整个西南地区处于领先地位,尤其是心脑血管和放射治疗中心,具有其他医院所不具备的先进技术设备和治疗方法手段。因此,我们此次参观实习的对象选择了中山医院。

由于医院是一个特殊人群聚集的地方,病人需要一个安静的环境,因此在实习过程中,我们一定要注意保持秩序,避免高声喧哗,以免对医院的正常工作造成影响。同时,在参观过程中,要随时留心,记录有价值的信息内容,而不是走马观花,一无所获。

经过大约一个小时的车程,我们抵达中山医院。

这是闹市中的一个并不十分显眼的大门,院落也不大,医院中心广场树立着孙中山先生的塑像,后面的幕墙上书写着中山医院的历史和现状。院内绿树成荫,间或有鲜花点缀其中,气氛祥和。三三两两的病患正在午后的阳光下散步或聊天。我们的到来显然引起了他们的注意,毕竟医院里是难得一下子看到这么多年轻人的。

中山医院设备科的孙科长欢迎了我们的到来,并且向我们介绍了此次参观的安排。我们将依次参观放疗中心、心血管治疗中心、ICU重症监护治疗病房、心脏电生理研究室、心脏影像研究室以及检验科等。在孙科长的带领安排下,我们开始了本次参观实习。

一、放疗中心

放疗中心,即放射治疗中心,位于地下三层,中心建筑的墙体厚达1.8米,均是一次灌注,无缝隙。这样的建筑结构能够最大程度地减少放射线可能对周围环境造成的影响。

放射治疗兴起于20世纪80年代,指主要利用高能X射线、电子线及Y射线等进行局部治疗而达到摧毁肿瘤病灶的目的。目前,恶性肿瘤仍然是严重威胁人类生命的一种疾病,可采取的治疗方法通常有三种,分别为手术治疗、放射治疗和化学治疗。通过放射治疗可减缓控制的肿瘤占发病总数的85%,这样的高有效性使得放疗成为一种重要的恶性肿瘤治疗手段。随着科技的发展,以“适形调强”为主流的现代放疗,成为当前治疗恶性肿瘤的主要方法,其特点为对于治疗部位的定位精确度高,副作用小,安全性高。放疗又可以分为内照式、外照式、三维适形放疗等方式。据中山医院放疗中心的黄主任介绍,目前全国范围内可以提供放疗的医院共有1200多家,而达到饱和则需要3000多家医院。这说明放疗在我国还需要进一步发展普及,具有广阔前景。

中山医院的放疗中心由以下几部分构成:TPS计划站、后装机室、加速器控制室、治疗室。病人首先要进行放疗定位,即确定放疗的针对范围,然后通过TPS计划站进行计划,该过程是利用计算机进行治疗方案的优化组合,得到最适合的治疗方案。根据肿瘤部位的不同,相应采取内放或外放,内放即照射源发出射线,照射腔内管内肿瘤;外放是利用直线加速器产生X射线,进行治疗。

放疗中心拥有的主要放疗设备如下:

1)山东新华医疗器械厂SL—1型放射治疗模拟定位机

通过X射线透视观察,定位肿瘤的大小和位置,是肿瘤患者在放疗前检查、制定、确认治疗计划的必备设备。

特点:

1、图像清晰:不论在低亮度,还是在高亮度条件下都能获得高质量图像。

2、各种模拟参数,显示精度高,重复性好。

3、可自动设置机架角度,源皮距SAD。

4、影像增强器的扫描范围大,并可与光阑同步移动。

5、具有末帧图像锁存功能。

操作方式:

全部模拟检查均可通过电视监测隔室操作,控制台具有控制、显示数据等功能。必要时可用手控器近台操作。

2)山东新华医疗器械厂XHDRl8高剂量率遥控后装治疗机

后装技术最初只是应用于妇科肿瘤的治疗,后来发展到广泛应用于治疗鼻咽癌、食道癌等等腔内肿瘤,即作为内照式与外照式之间的填充。目前后装技术使放疗对于腔内肿瘤的治疗效果可达到手术水平,甚至优于手术治疗,因此成为治疗腔内肿瘤的首选方法。

3)德国SIEMENS公司Primus6/15MV双光子医用直线加速器和多叶光栅(3—D)

PRIMUS是西门子公司专为调强治疗而研制的最新型全数字化直线加速器。该机为全数字化处理,自动化程度高,精确可靠,可进行高质量放疗。PRIMUS意指Productivity(高效),Reliability(稳定可靠),IntensityModulation(调强)和UnifiedStructure(结构统一)。新的固态化技术使PRIMUS的体积较之早期的MEVATRONK减少了76%。这意味着客户可以大大的节省机房面积,因而也就节省了机房造价。

中山医院购进这台设备耗资70多万美金。该机可以发射两种射线(电子线和X射线)进行放疗。X射线可根据肿瘤深浅选择使用不同的档位,共分6档。

4)南京东影公司Angelplan-3000头部三维立体定向放射治疗系统(简称X头刀)

5)南京东影公司Angelplan-3000体部三维立体定向放射治疗系统(简称X体刀)

AngelPlan-3000(A、B)系统是应用于头部,或体部的X射线三维立体定向精确放射治疗产品。独特的设计思想和实现手段,使头部治疗和体部治疗一样精确,是真正意义上的X刀。

头环及准直器

6)南京东影公司Angelplan-2000无框架三维立体激光定位系统(CT-sim)

Angelplan-CTSim模拟激光定位系统是东影公司在中国率先推出的适用于X-刀、适形放疗的无框架三维立体激光定位系统。该系统是Angelplan三维立体定位床的可替代高端产品,主要用于大型专业肿瘤诊治机构、有实力的医疗单位,也使不适合彩三维立体定位床的医疗机构有了拥有X-刀、适形放疗手段的基本条件。

系统特点:

1.使用理解方便,效率更高

2.采用光机电一体化技术,避免了机械误差

3.精度高,重复定位误差极小CT成像效果很好

4.可直观方便地验证定位精度

5.TPS结果更准确

6.更专业、更科学,患者更舒适

组成结构:

1.三维立体激光定位系统

2.检测校验装置

3.校正精密量具

4.定位支架与定位腹膜

5.系统控制计算机

6.软件系统

7.Windows操作系统

性能指标:

1.综合定位误差可实际控制在1.5mm之内

2.激光线可调整聚焦,标识位置激光线宽小于1mm

3.重合激光线吻合误差小于1mm

4.步长误差小于0.3mm

7)南京东影公司Angelplan—2000型三维常规、适形放射治疗计划系统(3D—TPS)

系统特点:

1.通过DICOM接口,直接从CT、MRI等主机上读取图像数据并解码成治疗计划系统所需要的图像格式,大大缩短图像预处理时间,利用图像的高保真度进行窗口宽床位调整,使病灶的诊断和提取都相当方便

2.提供适形野的自动设置功能,系统可根据病灶的投影形状自动给出适形野的形状,即可通过系统提供的挡块技术来实现,也可通过系统自动配置的多叶光栅来实现

3.提供了实际尺寸的适形野和挡块设计图,直接用于适形铅块或挡块的制作和加工

4.提供了射野的补偿调整设计,可用于多野适形调强放疗计划的制订

5.提供了进行电子线和X线混合照射的治疗计划设计功能

6.临床必备的质量保证系统

二、心血管治疗中心

中山医院的心血管治疗中心拥有心脏导管工作站、心脏介入治疗室等科室。主要设备有:

1)GE公司LCVplus全数字减影血管造影机

LCVplus全数字减影血管造影机可以实现最先进的三轴系统设计是国际上唯一采用计算机控制的系统,具有独特的动态实时减影高效三维血管造影技术,独特的计算机最佳投影角度定位技术,独特的智能化手柄技术,配超强图像后处理工作站。

2)心电导管工作站

在线计算导管手术中获得的血流动力学数据,适合新生儿、儿童、成人。开放式结构,使得同步处理的用户数量不受限制。大容量存储能力,保存病人数据、波形和图形。开放式设计,自由输入或输出HIS系统和多种临床数据系统,带有血流动力学信息的图像存储和汇报功能,多种预置的分析软件,如:冠状动脉树报告软件,先天性心脏图片软件。DICOM连接传输图像。

3)心内电生理仪

心内治疗时,此仪器可以实时现实当前心内指标,心内活动状况,便于手术进行。

4)美国柯达公司DIRECTVIEWCR900型计算机X线摄影系统(CR)

传统的普通放射学通过胶片获取与存贮信息,因此若胶片损坏,则图像消失。而CR是照片时信息存贮于影像板(IP板)上,经过计算机读取与转换形成数字化图像。因此,CR具有图像后处理功能,通过调整,不仅可最佳显示被观察部位,而且可观察不同的组织结构。可直接用激光相机记录信息于胶片上,不仅可提高胶片的图像质量,而且通过激光相机与自动洗片机连接,减少操作程序,节约时间及人力。此外,数字化信息可用磁带、磁盘、光盘等储存,有利于长期保存。

该系统可在放射部门集中装载和处理多暗盒。只需在检查室或某个远程地点安装柯达DirectView远程操作面板,就可实现分散式工作流程。放射技师无需离开检查室就可对患者进行全面的检查,从而简化工作流程并向患者提供更好的护理。使用远程操作面板就能够输入病人资料和检查数据,扫描条形码,把暗盒装到CR900系统,然后回到安装了面板的检查室。在这里可调整影像质量,对其添加左/右记号,对影像进行再处理,而后将其送到目的地供软拷贝检视、打印或存档。

三、重症监护治疗病房(ICU)

重症监护治疗病房(ICU)是近年来各大医院逐步建立起来的一种现代化医疗护理管理模式,是对危重和重大手术病人进行集中强化抢救、治疗的场所。国际上已经把ICU的建立、床位数及设备完美度、人员素质以及抢救效果等方面作为判断一个医院技术水平的重要标志之一。

中山医院院ICU设床位18张,两个中央监护系统、每张床旁都配备了多个具有世界先进水平的监护、治疗系统。一大批精通各重要脏器功能衰竭抢救治疗及丰富临床经验的专职医师及护士,对危重及重大手术病人进行24小时的连续、严密地监护处理,以保证病人各重要脏器功能的顺利恢复,从而大大地提高了治愈率,有效地降低了病人的死亡率。

ICU病房的基本要求是每位病人配备一台监护仪、一台呼吸机,同时还配备输液泵、微量注射器等。监护仪联网,在护士工作站进行统一监护。将重点监护病人和一般监护病人的监护信息分屏显示。主要检测指标为:心电、血氧饱和度、血压。其中血压可分为无创血压和有创血压,对于术后病患,有创血压的检测十分重要。

ICU病室收治的对象为需要监测及脏器功能支持设备、随时有危及生命可能的病人。主要包括:

(1)心肌梗塞

(2)持续性或不稳定性心绞痛

(3)重度房室传导阻滞、严重心律失常

(4)各种类型休克、循环衰竭、弥散性血管内凝血(DIC)

(5)呼吸功能衰竭、成人呼吸窘迫综合征(ARDS)、急性肺水肿、肺梗塞、慢性阻塞性肺疾患(COPD)、重症肌无力

(6)肝、肾功能衰竭

(7)消化道大出血

(8)严重创伤、重大手术治疗后

病人一般平均住ICU时间3~5天,病情复杂者2~4周。

四、心脏电生理研究室

心脏电生理研究室可以进行心电长期检测、运动实验及远程监护等。

DMSTO美国二十四小时动态心电监测,能长时间地监测心律失常,心肌缺血时段,大大提高拾出率。心电工作站包括十二导同步心电图、心室晚电位、心率变异性等,对预测心脏性猝死的危险性有重要意义。利用12导联Holter系统,对心脏进行24小时连续的检查和记录,全天平均10万次心跳情况均可以得到记录。

对于一些特殊病人,为检查其心脏工作状况,需要进行运动实验,包括平板实验、倾斜实验等。这些运动实验可以检测运动情况下人体的心力储备能力。中山医院应用的伯利克7600平板运动机能检查出潜在的冠状动脉供血不足

同时,心脏电生理研究室具有心脏远程监护系统,终端通过网络(电话网)连接到病人家中,可以实时读取病人的心电信息,而不需要病人离开家来到医院。这种远程监护是目前监护的发展趋势,它的方便性是最大优点。

五、心脏超声影像研究室

超声影像研究室可进行B超和彩超检测。

B超是超声显像法的一种,利用探头向人体组织发射人耳听不到的超声波,同时将人体各种组织反射的超声波接收还原显示在特点的显示器上形成图像后由医师辨别人体器官是否发生病变,由于B超对人体无损伤,准确率高,因此,B超广泛地应用在医学临床上。B超的清晰度表现在所能显示光点灰阶级数的多少,随着计算机技术的日新月异,B超所能显示的灰阶级数也由最初的8级发展到256以上。各种新型探头如术中探头、腔内探头及多类高频探头的应用,也大大拓展了B超的应用范围。

中山医院采用西门子公司的SONOLINEAdara(亚当)数字化黑白超声诊断系统。该设备在超声临床诊断方面具有广泛的应用范围:腹部,妇产科,泌尿科,表浅小器官,外周血管等。它采用先进的数字化超声灰阶成像技术,具有全声场极佳的穿透力、从近场至远场均匀细腻一致的卓越超声图像。系统通过宽频带变频探头群,优质的宽孔径可变技术和极佳的动态聚集等技术,达到了高精确度的优秀成像水平,使其广泛应用于临床各系统诊断。高质量图像及12英寸高分辨率无闪烁显示器为超声医生提供了极有价值的诊断依据。SONOLINEAdara为灰阶超声诊断系统中的精品,其新颖的外观,灵巧的操作台设计极具人机工程学特色,还具有轻便、易移动、多科室应用等特点并具有极强的升级能力。该系统可进行数字化图像电影回放,内置640MB的MO磁光盘驱动器可提供精确度极高的数字化图像及数据存储,并具有数字化网络功能。该系统具备多种数字化接口以方便超声医生作各种不同的后处理。

在高清晰度的黑白B超基础上引入彩色多普勒技术就形成了彩色B超,简称彩超。彩超可以形成彩色多普勒超声血流图像,既具有二维超声结构图像的优点,又同时提供了血流动力学的丰富信息,在临床上被誉为“非创伤性血管造影”。其主要优点有:快速直观显示血流的二维平面分布状态;显示血流的运行方向;有利于辨别动脉和静脉,识别血管病变和非血管病变,了解血流的性质、方向与速度,能对血流的起源、宽度、长度、面积进行定量分析。

心脏彩超可以诊断各种先天性心脏病、瓣膜病、高血压性心脏病、冠心病、心肌梗塞、各种病因导致的心肌病、心肌炎、肺心病、晕厥查因、心律失常查因、小儿川崎病、心脏肿瘤、心包病变、甲亢性心脏病等,是冠心病高危人群常规体检方法。对心脏杂音的病因诊断可以提供直观的依据,是心脏病体检的重要手段,同时它可常规用于心脏手术中的检测,同时可指导心脏病的临床用药,还可帮助临床判断垂危病人心功能情况。

中山医院采用的是美国惠普公司的HP5500型彩色多谱勒超声心动图,这台设备具有国际领先的技术,功能十分强大。

六、放射科

放射科日常进行各种常规透视摄片。此外还开展各种特殊检查,如消化道钡餐、钡灌肠、静脉肾孟造影、胆道造影、ERP、脊髓造影、下肢静脉造影、瘘道造影等。双螺旋CT检查,能对各类胸部、腹部、骨关节、颅脑疾病作出准确的检查,得到三维信息,能进行CT血管成像(CTA)以及介入治疗。通过同相关科室合作,可进行各种先天性、后天性心脏血管疾病造影检查及诊断,如“冠状动脉造影检查及诊断”、“婴幼儿先心病造影检查及诊断”、“膝关节造影及支气管造影检查与诊断”等。

放射科主要仪器设备包括:

1)PHILIPS公司的通用X光机TELEDIAGNOST

主要用于对消化道、泌尿道等管腔进行透视成像。通过高压激发X线进行透视成像。具有影像增强器,连接影像工作站,可随时放大、缩小和标记,这是优于普通X线成像设备之处。

工作方式:

1.可三面接触病人,有利于ERCP检查或者四肢血管造影

2.床面在任何位置均可进行数字化或非数字化断层摄影

3.直觉式操作界面

4.内置式病人踏脚板

主要功能:

1.栅控透视(GCF)能以最低的剂量获得高质量的图像

2.DSIPro产生优异的图像

3.可进行脊柱和结肠重组

2)Elscint公司(已被GE与Marcomi公司兼并)双层螺旋CT

Elscint公司的这台设备采用了其独有的TWIN技术,即发双层螺旋CT扫描技术。双层螺旋CT扫描比普通CT扫描成像更清晰,检测效果更好。本仪器使用水冷。在检测前,需要向病人静脉注入含碘的造影剂以便于成像。

3)BENNETT拍片机

普通X线拍片机。连接CR系统,部分数字化。它是从传统相片向数字相片过渡阶段时期不可抛弃的设备。

4)柯达CR系统

计算机X线摄影(ComputedRadiography,CR)是X线摄影的发展。随着计算机的应用发展,到80年代CR才逐渐发展起来。CR的基本工作原理是X线透过人体后,射到影像板上,并形成潜影,再将照过的影像板置入激光扫描机内扫描,将图像信号通过模数转换器转变成图像,此图像可用三种方法显示出来:

1.通过监视器(荧光屏)直接阅读

2.用多幅照相机直接将影像照到胶片上

3.用激光照相机直接将影像信号记录在胶片上。

影像的储存可采用光盘,磁带和磁盘,但以光盘储存最好,因为光盘储存的信息20年以上也不会发生影像质量变化。

影像板的构造:

1.表面保护层,它可防止荧光屏受损伤,多采用聚脂树脂类纤维。

2.辉尽性荧光物质层,它在接受X线后产生辉尽性荧光,并形成潜影。采用的辉尽性荧光物质BaFxEu++(x=Cl,Br,I)等与多聚体溶液混匀,均匀涂布在基板上,表面复以保护层。

3.基板,相当于X线片基,它既是辉尽性荧光物质的载体,又是保护层。多采用聚脂树脂作成纤维板,厚度在200~350um。基板为黑色,背面常加一层吸光层。

4.背面保护层,其材料和作用于表面保护层相同。据国外经验,一张影像板大约可用2000次。

CR的优点:

1.空间分辨力高

2.灵敏度高

3.射线量少,只是平片的1/5~1/20

4.处理速度快而不需暗室处理

5.储存方便,可靠和时间长

虽然CR的效率不及DR,但它的低价位仍使它成为一个颇具价值的选择。小型的医疗机构或者希望分阶段实施PACS的单位可以购进CR,当设备接近使用年限之后,再更换为DR。

七、检验科

检验科由临床生化、临床免疫、临床微生物、临床检验、基因诊断室及血库组成,现有实验室面积600余平方米,仪器设备总价值400余万元。检验科主要拥有大型全自动生化分仪、全自动电解质分析仪、全自动特种蛋白分析等设备。

检验科采取统一集中的方式放置设备仪器,这主要是为了便于统一控制环境温度和湿度。对于精密电子仪器,温度和湿度的影响不能忽略,尤其是湿度因素,不适当的湿度会对仪器造成损伤。

这次参观实习,我们近距离地接触到了平时只出现于书本上、图片中的各种医疗仪器设备。参观的过程也是一个不断复习、不断将知识联系起来、融会贯通的过程。一些过去只知表面意义的名词终于在现实中得到了直观的认识。这样的实习使我受益匪浅。

生物医学工程范文第4篇

[关键词]生物医学工程;专业发展;强国战略;人才培养

一、新战略格局下的生物医学工程学科发展概况

生物医学工程(生医)是一门新兴的交叉学科,自1987年国家科委成立了生物医学工程专业组开始,该学科在中国已经发展了40余年。从专注于科学研究的早期发展到专业细化发展,生物医学工程在中国的专业发展水平稳步提升;再从“一带一路”到《中国制造2025》,生物医学工程有了更为广阔的市场发展空间。

(一)““一带一路”倡议与生医学科。“一带一路”是中国国家主席习于2013年提出的跨时代、跨地区、惠及亚欧非三洲的宏大战略目标,是“丝绸之路经济带”和“21世纪海上丝绸之路”的共同简称,也是从最初的发展愿景到如今新时代中国特色社会主义中必不可缺的一部分。在响应“一带一路”倡议的60多个国家中,包含约44亿的总人口数量及21万亿美元的经济总量,“一带一路”使这些国家和地区拥有了广阔的发展空间和潜力。但是,在“一带一路”沿线的国家和地区中,仍有经济、服务,尤其是医疗技术事业发展有着明显欠缺的区域[1]。例如,处于亚洲南部地区的印度,医疗技术发展水平落后,缺乏相关辅助的医疗设备。在这种情况下,“一带一路”为该国带来了巨大利好。大量医疗设备通过“一带一路”以低利润方式输入至该国,为该国改善医疗条件、提高民生水平做出了有益的贡献。据统计,我国在2017年向印度出口医疗器械的出口额为5.56亿美元,占同年出口额总比的12.4%,远高于“一带一路”沿线其他国家。进一步,我国众多的医疗相关企业也携带大量资源,通过“一带一路”途径进入沿线国家,为改善当地落后的医疗水平做出了实际贡献。例如,在肯尼亚项目中,东软医疗作为肯尼亚政府“全民健康覆盖计划”的核心合作伙伴,为全国37个郡提供高端医学影像设备、影像云服务及临床应用培训等一站式集成解决方案,解决了当地居民的看病难问题,展示了“中国制造”的理念和态度,深化了“一带一路”战略的主题[2]。

(二)《中国制造2025》计划与生医学科。《中国制造2025》是国务院于2015年5月印发的部署全面推进实施制造强国的战略文件,是中国实施制造强国战略第一个十年的行动纲领。制造业是衡量一个国家经济发展、综合国力的标准。改革开放以来,制造业持续快速发展,极大提高了综合国力,是国家安全的重要保障。目前,中国制造业较之世界先进水平仍有差距,《中国制造2025》计划将引导中国由制造业大国向制造业强国转变,提高医疗器械的创新能力和产业化水平,重点发展影像设备、医用机器人等高性能诊疗设备和新技术的突破和应用[3]。

(三)““一带一路”与《中国制造2025》的关系。如果说,“一带一路”是“走出去,交朋友”的外交战略,那么《中国制造2025》就是“待在家,练本领”的内政纲领,二者相辅相成,互相促进,彼此补充。“一带一路”可以让中国与沿线国家更好地进行先进科技和优秀文化的互融互通、取长补短,提高《中国制造2025》实现的速度;《中国制造2025》可以更好地提高中国的综合实力,既有助于吸引更多“一带一路”沿线国家到中国进行投资和贸易,又有助于中国输出更高品质的技术与资本到沿线国家。可见,“一带一路”与《中国制造2025》都是利国利民的大政方针,都是有助于生医学科发展的重要指导性政策。

二、大时代背景下生医人才的培养与发展

中国在20世纪70年代末创立了生医本科专业[3-4]。经过40余年的发展,我国的生医技术水平有了明显提升。纵观其发展历程可以发现,1.我国的生医学科教育的培养目标更注重专业性;学生更适合社会生产需要,通识性教育和职业素养较差;培养过程过分强调专业性技术人才,却降低了生医学科的弹性。2.中国生医学科主要在医学类院校和理工类院校中开展。在实际学习中,医学类院校较了解医院工作人员和患者的实际临床问题,但是在工程实践领域却相对薄弱。与之相反,理工科院校有着巨大的工程技术实践优势,但却脱离临床,无法从根源处了解需求。生医学科是综合性很强的交叉学科,加强医、工融合,这对加快生医学科的健康有序发展有着至关重要的作用。针对以上薄弱环节,生医人才培养必须不断结合临床实际需求,加大医工相互交流力度。生医学科作为新时代新工科的一员,具备跨学科、跨行业这一特征。新工科大环境下的生医学科人才培养体系建设应该充分体现学科特点,注重实际应用,学科与生产实践、产业及行业融合,紧跟时展要求,既要引领学科发展、促进技术进步,又要促进学科与产业融合,为生产及科研服务。这就要求培养的学生具有一定的技术能力以及参与工程项目解决实际问题的能力[5]。以东北大学医学与生物信息工程学院(医工学院)为例,其不仅具有行业一流的企业公司(包括东软集团和皇家飞利浦电子等)提供的产业平台,而且具有与中国医科大学的长期合作关系,这些协同资源从学科、产业、科研各方面给了医工学院生医专业巨大支持。而在实践探索的过程中,医工学院形成了独特的生医“产、学、研、医”高度融合良性互动的生态环境,为学生的进一步发展提供了良好的资源[6]。生医的人才培养为“一带一路”、《中国制造2025》等战略提供了不可或缺的医疗技术人才。国家的发展需要人才,科技的振兴需要人才。高等院校是人才培养的主要场所,承担着教育、培养、训练学生的责任。生医的人才培养为国家医疗领域建设提供了优质的医疗人才。生医相关人才发展符合社会的发展需求,与国家的发展趋势相吻合。《中国制造2025》将高性能医疗器械列为重点发展的领域,这加快了我国由医疗器械制造向医疗器械创造的进程,医疗器械产业也将由数量向质量蜕变,打造医疗器械产业的中国“芯”。强国政策下的生医学科发展应具有创新性。党的报告指出,中国需要加快建设创新型国家,倡导创新文化,强化知识产权创造、保护、运用。生医学科所研究的结果也应从医院的框架中跳出来,走进人们的日常生活。实施健康中国战略,应坚持以预防为主,倡导健康文明的生活方式,预防控制重大疾病。当前我国处于大数据、云计算、人工智能等前沿技术蓬勃发展的信息化时代,“互联网+”正在与各行各业深度融合,伴随“十三五”规划建议落地,“健康中国”正式升级至国家战略,“互联网+”信息化也将成为深化医改、推进健康中国建设的重要技术手段[7]。“互联网+”时代的到来为生医学科的发展增添了更多的可能性。以互联网为载体,线上线下互动操作,加快了生医领域面向互联网医疗的发展,为医护工作人员和病患提供了一种更为舒适、便捷的治病方案。

三、问卷调查及分析

(一)问卷调查与统计分析。在“一带一路”、《中国制造2025》等强国战略下,生医学科获得了前所未有的发展空间。下面以东北大学生医学科为例,对四个年级的600名本科生进行了有关生医学科发展的问卷调查,共回收问卷322份,问卷回收率达到53.7%,超过发放问卷数量的50%,统计有效。问卷内容及统计结果见表1。由表1可见,332名本科生中的大多数人对生医学科的未来发展有着稳定的预期,主要表现在三方面:1.对于个人所在专业的认可程度较高(题目1、2、9、12);2.对于个人所在专业的就业自信心较强(题目5、6、11);3.对于自己能力水平及努力程度评价比较客观(题目3、4、8、10、)。其中,第7题,月生活费开销水平,该题反映出该学科学生的家庭经济条件总体稳定,较少出现因家庭经济贫困而导致的学困情况。综上,东大医工学院的本科生体现出的思维及行为水平,与国内大多数高校同类专业的学生处于相同阶段,具有较强代表性。可见,该问卷的统计结果可以作为相关研究的有效参考数据。进一步,本课题根据生源地省份对问卷结果进行了更加详细的统计分析,统计结果见图1、图2。由图1、图2可以知,本课题从322名学生的生源地入手,探究生医学科在不同地区的普及和发展预期情况,聚焦问卷中体现的两个关键点,即“对生医学科的了解程度”“对生医学科的发展前景预期”绘制两图。从整体上来看,学生对生医学科的了解度和认可度是普遍的、广泛的。从中可以发现,在经济发展速度较快的地区,学生对生医学科的认可程度和发展预期越强,这体现出经济水平与科技进步水平相辅相成的特点。

生物医学工程范文第5篇

生物医学工程是综合生物学、医学和工程学的理论和方法而发展起来的新兴边缘学科,其主要研究方向是运用工程技术手段,研究和解决生物学、医学中的有关问题。

多学科的交叉使它不同于那些经典的学科,也有别于生物医学和纯粹的工程学科。现在的生物医学工程在疾病的预防、诊断、治疗、康复等方面起着巨大作用,世界各主要国家均将它列入高技术领域,重点投资、优先发展。

[1-2]计算机网络诞生于20世纪60年代,目前已成为一个重要的研究和学习领域。

计算机信息网络为医学信息交本论文由整理提供流、资源共享、了解医学动态等提供了快捷便利的手段,为医疗事业的发展带来了无限机遇和严峻挑战,未来医疗界的竞争将是医疗高科技信息的竞争。因此,对计算机网络的学习是非常有必要的。

而要学好这门课程,不仅要学习一些概念,掌握计算机网络的基本原理,还要掌握一些技能,具备实际操作的能力。作为非计算机专业的学生,在教学内容和教学方法上都应与计算机专业的学生有所区别,以体现出专业特色。

笔者提出构建“面向应用的生物医学工程特色”的计算机网络教学体系建设,注重培养大学生的科学发展观和自主学习的意识、方法及创新能力,将信息技术基础教育紧密结合本专业、本学科未来的应用方向,科学合理地培养大学生的IT知识结本论文由整理提供构,使学生毕业后能够适应专业工作中对信息技术和数字化技术的要求,成为适应未来社会的合格人才。本文就其教学过程中的教学内容谈一点体会。

一、注重教学内容的不断更新计算机网络是当今发展最为迅速的学科之一,每天都有新的发展和应用,教师只有在教学过程中不断更新教学内容,才能跟上时代的步伐

[3]俗话说:你要给学生一勺水,那么你自己就要准备一桶水。要教好这门课,教师需要大量的阅读文献、资料和国内外教科书,对这门课程主要技术的发展背景、关键技术要有深入准确地把握,同时还必须通过承担相关的科学研究,能够通过自己的工作,理论联系实际,真正理解和掌握核心技术,了解技术发展的动态和学术前沿。还需要在教学的过程中不断地向学生学习,了解他们对问题的一些新的认识、解决的思路以及初学者对哪些问题不容易掌握和它的原因。

针对网络技术发展的不断更新,在教学内容上应安排一些基础的理论内容,比如网络的拓扑结构、数据通信基本原理等,便于同学本论文由整理提供们今后能够在此基础上自学。比如在讲述网络七层协议时,可以参考西安交通大学的计算机网络精品课程内容,以乘飞机的过程举例,提出协议、服务和层次的概念,以此类比,可以让学生更好地理解网络的层次划分。由于本专业的学生没有开设数据通信方面的课程,因此课程安排上要逐步加入通信技术的有关知识,使得学生只要具有物理学方面的基础,就能很好地接受这些知识,而不需要专门去补习这门课程。

二、注重学生实际操作能力的培养在计算机课程的教学中,要紧密结合专业的需要,克服过于偏理论的倾向,以能力培养为导向、以实践为目的的教学思想,调动学生的积极性

例如,在讲授网络技术内容时,可以结合学校校园网或者医院局域网的建设来贯穿整个教学,从物理层直到应用层,同时覆盖网络设备内容。在医院信息系统的讲授过程中,可以以学校校医院的信息系统为例,从整体上了解医院信息系统(HIS)的内容,学生通过在医院本论文由整理提供的实习可以全面了解医院信息的流程和医院管理模式,为学生毕业设计打下坚实的基础。在医院信息系统安装、调试技能实习过程中,以企业研发的主要产品——医院信息系统(HIS)和医学图像存档传输系统(PACS)作为该门课程中的重要内容,突出了课程的实用性和应用性。从专业和非专业的角度来谈教学侧重点,应强调要放在应用上。

因此,在设计教学内容上可以参考西安交通大学的精品课程,强调知识点、技能点,从教学方法上进行改革,比如多种方法的使用、多种手段的使用以及考试评定方法的改革等。虽然在笔者的课堂上也使用过一些教学方法,但还缺少互动讨论,其实对于小班的学生,这种方式更好推广,而且还能很好地调动学生学习的积极性。强调工程应用能力结合理论知识、自上向下地安排教学内容,这和笔者之前的安排完全不同,在教学过程中会出现学生不理解网络有什么用的现象,而采取西安交大的这种方式,可以带着问题进行教学,通过案例,引导学生用理论知识解决实际应用问题,提高学生的学习兴趣。

三、注重课堂气氛的调节对于知识量大的课堂,在安排时不妨在灌输理论知识的同时,合理增加常识性的内容,这样一方面能够重点突出,另一本论文由整理提供方面可以缓解学生的疲惫状态,对一些初学者是一个很好的知识补充

比如在讲传输介质时,前面的大部分时间讲述了关于通信原理的基础知识,有些是非常晦涩难懂的理论,同学们已经显出倦态,因而剩余的小部分时间可以用多媒体的形式播放一段关于双绞线制作的视频。

对于晦涩难懂的教学内容,应该注重学生的反映,通过举手的方式来了解学生理解的程度,比如在讲曼彻斯特编码技术的时候,先让一名同学画出波形图,然后让学生自己判断是否正确,通过了解可以看出学生的掌握情况,然后再进行讲解,反复几次,可以达到良好的教学效果。概念的强调和解释可以用生活中的例子来说明,比如服务和协议,就可以用生活中的例子来解释;而对于有关的、好理解的内容,可以以自学的方法来学习,也可以在课堂教学中省略这方面的内容。超级秘书网

四、注重因材施教应该因材施教,针对理解力强的学生,可以把一些难点让他来讲述,以引发他的兴趣,比如以太网时间槽的概本论文由整理提供念,可以留下疑问到下堂课让他来讲述;针对一般大多数同学,可以在他讲的基础上再讲一遍,用通俗易懂的语言来加深对概念的理解

教学过程应该把重点和难点讲出来,然后由学生组织讨论的方式来理解教学内容,教师不必把所有的点都讲到,知识性的内容不用讲得太详细,因为大学生有这方面的素质,尤其小班上课,可以充分调动学生的积极性来投入到教学中,年轻教师不必拘泥于固有的模式,而应该创造自己的教学方式。尤其讲到分层原理时,可以拿一个例子来讲述整个过程,因为专业的学生有电路的知识和软件的知识,可以理解得比较透彻。

同时配合Flash动画来进行教学,可以取得更好地教学效果。随着卫生信息化的迅速发展,各院校各个层次学生的信息技术教育都要与未来实际应用相结合,从而形成面向应用的专业特色IT课程教学体系。随着网络技术、数字化医疗技术的发展,本论文由整理提供数字化医院、远程医疗等都建立在网络基础之上,熟练掌握网络应用已成为学生将来必备的能力。

参考文献:

[1]鲁雯,秦斌,王鹏程,等.生物医学工程专业教材建设与探索[J].医疗设备信息,2005,20(11):40-41.

友情链接